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1 January 10, 2023

1.1 Basic Counting Principles

Lemma 1.1 (Addition Principle)
For n disjoint sets S1,S2, . . . ,Sn, the cardinality of their sum

|S1 + S2 + . . .+ Sn| = |S1|+ . . .+ |Sn|.

Definition 1.2
Let S1, . . . ,Sn be finite sets. Their Cartesian Product is defined

S1 × . . .× Sn = {(s1, . . . , sn)|s1 ∈ S1, . . . , sn ∈ Sn}.

Lemma 1.3 (Multiplication Principle)
For n disjoint sets S1,S2, . . . ,Sn, the cardinality of their cartesian product

|S1 × . . .× Sn| = |S1| · . . . · |Sn|.

Definition 1.4
A function f : A → B between finite sets A and B is called a bijection if

f (a) = f (b) =⇒ a = b (injectivity) and for all b ∈ B, there exists a ∈ A such

that f (a) = b (surjectivity).

Theorem 1.5 (Pascal’s identity)
For nonnegative integers n,k,(

n+ 1
k + 1

)
=

(
n
k

)
+
(

n
k + 1

)
.

Proof. The left hand side represents the number of ways to choose k + 1 elements

from a set of size n+ 1. Another way to count this is to consider whether or not to

include the last element in the set. If this element is included, this contributes
(n
k

)
.

If this element is not included, this contributes
( n
k+1

)
. Together, this forms the right

hand side, so we are done.
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1.2 PIE

Lemma 1.6 (PIE)
Let A1,A2, . . . ,An be finite sets. Then

|A1 ∪ . . .∪An| =
n∑

j=1

(−1)j−1
∑

{i1,...,ij }⊆[n]

|Ai1 ∩ . . .∩Ain |.

Example 1.7 (Derangements)
A permutation on n elements πn is called a derangement if π(i) , i for all

i ∈ [n]. Let D(n) be the number of derangements in Sn. Then

D(n) =
n∑

k=0

(−1)k
n!
k!
.

Proof. D(n) is equal to n! minus the total number of permutations that have at least

one fixed point. Let Ai be the set of all permutations which fixes i. Then

D(n) = n!− |A1 ∪ . . .∪An|.

For any set of k points which are fixed, there are (n− k)! ways to permutate the

remaining (n− k) elements. Therefore, by PIE,

|A1 ∪ . . .∪An| =
n∑

j=1

(−1)j−1
∑

{i1,...,ij }⊆[n]

|Ai1 ∩ . . .∩Ain |

=
n∑

j=1

(−1)j−1
(
n
j

)
(n− j)! =

n∑
j=1

(−1)j−1n!
j!
.

Substituting this into our expression for D(n) gives us the desired result.

Using the taylor series for e, it can be proven that D(n) = ⌊n!/e+ 1/2⌋.
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Example 1.8 (Euler Totient)
For any positive integer m, the euler totient ϕ(m) is defined as the number

of positive integers between 1 and m inclusive that are coprime to n. If the

prime factorization of m is pa1
1 pa2

2 . . .p
ak
k , then

ϕ(m) = m
k∏

i=1

(
1− 1

pi

)
.

Proof. Consider instead the number of positive integers that are not coprime to n.

These positive integers have at least 1 prime power in common with m. Let Ai

denote the set of positive integers ≤m with prime power pi . Then

ϕ(m) = m− |A1 ∪ . . .∪Ak |

= m−


k∑

j=1

(−1)j−1
∑

{i1,...,ij }⊆[m]

m
pi1 · . . . · pij


= m

1 +
k∑

j=1

∑
{i1,...,ij }⊆[m]

(
−1
pi1

)(
−1
pi2

)
. . .

−1
pij




= m
k∏

i=1

(
1− 1

pi

)
,

where the last line follows by polynomial expansion.

2 January 10, 2023

2.1 Probability Measure

Definition 2.1
A sample space Ω is a set of individual outcomes. An event space F is a

family of subsets of Ω.

Technical jargon: F must form a σ -algebra over Ω, meaning that Ω is in F , and

so are complements and countable intersections, unions of elements in Ω. When
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Ω is finite, we assume that F is just the power set of Ω. We won’t talk more about

the technical details for σ -algebras.

Example 2.2
Roll 2 fair die.

The sample space is Ω = {(i, j),1 ≤ i, j ≤ 6} recording the pair of rolls. The event

space F = P (Ω) is the power set of Ω. If we let E be the event that the sum of the

rolls is 7, then

E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} ∈ F .

Definition 2.3
A probability measure is a function P : F → [0,1] satisfying

• P[Ω] = 1.

• For disjoint events A1, . . . ,An,

P

⋃
i≥1

Ai

 =
∑
i≥1

P[Ai]

The principle of inclusion-exclusion holds for probability measures.

Theorem 2.4
For events A,B ∈ F ,

P[A∪B] = P[A] +P[B]−P[A∩B],

and appropriate generalizations hold for an arbitrary number of events.

Proof. Use set operations.

The simplest probability measure that can be defined on discrete sample space

is the counting measure, also called the uniform measure.

7



Andrew Liu January 10, 2023

Definition 2.5
The counting measure P on (Ω,F ) is defined by

P[E] =
|E|
|Ω|

,

for all E ∈ F .

Intuitively, this measure defines P[E] as the number of satisfying cases |E| di-

vided by the total number of cases |Ω|. Another probability measure can be defined

via the probability mass function (pmf).

Definition 2.6
If Ω = {ω1, . . . ,ωn} is a finite set and p(ω1), . . . ,p(ωn) are nonnegative real

numbers that sum to 1,

P[E] =
∑
ω∈E

p(ω)

defines a probability measure on P (Ω) (i.e., F ). The function p is called the

probability mass function (pmf) of P.

2.2 Continuous Probability Spaces
How do we pick a random number from [0,1]? We want a uniform measure P on

[0,1] that satisfies P[(a,b)] = b − a. This is not possible for F = P (Ω) (which is not

really even well-defined). The solution is to restrict events to a smaller set B[0,1],

called the Borel sets of [0,1]. As before, the event space (in this case, the Borel

sets) are a σ -algebra over Ω, meaning that they are formed by countable unions

and intersections of elements in Ω. Borel sets are formed specifically by unions

and intersections of open intervals. B[0,1] can also contains closed intervals. For

example,

[0.1,0.2] =
⋂
i≥5

(0.1− 2−i ,0.2 + 2−i),

which is a closed interval formed by a union of countably infinite open intervals

that approach the upper and lower bounds infinitely close.

When P is uniform on [0,1], what is P[0.5]? If P[0.5] = c > 0, every P[{x}] = c, so

P on any set with more than 1/c elements exceeds 1. Therefore, P of any singleton
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is zero. This leads to a natural question: is this a contradiction?

1 = P[Ω] = P[∪x∈[0,1]{x}] =
∑

x∈[0,1]

P({x}) = 0.

The answer is no. Our event space is B[0,1], which has a countably infinite num-

ber of elements. On the other hand, the above is summing over all real number

between 0 and 1, which is an uncountably infinite set. Over this set, P is not nec-

essarily a probability measure, i.e., the sum of the probabilities of disjoint events

need not strictly equal the sum of their union.

2.3 Random Variables
Random variables correspond to observations on random experiments. For exam-

ple,

• Ω is the set of people in Cambridge.

• Experiment: Pick random person

• Observation: height H of person chosen.

H : Ω→ R is called a random variable.

Definition 2.7
Given a probability space (Ω,F ,P), a random variable X is a function Ω→ R.

Definition 2.8
Given random variable X on the probability space (Ω,F ,P), consider the

function PX : BR→ [0,1] defined by

PX[B] = P[X−1(B)] = P[{ω ∈Ω|X(ω) ∈ B}].

PX is called the pushforward of X and determines a probability measure on

(R,BR).

P takes events as input, whereas PX takes as input a subset of R. This is impor-

tant!

9
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Example 2.9
Let Ω = {H,T } and P be the counting measure on Ω. Let X be a random

variable with X(H) = 5 and X(T ) = 10 which represents how many dollars

you win for flipping a head or a tail. Its pushforward measure PX satisfies

PX[B] =
1
2

15∈B +
1
2

110∈B,

where 1x∈B is 1 when x ∈ B and 0 otherwise.

For concreteness, PX[{5}] is the image of the set of elements in Ω which satis-

fies X(Ω) = 5 under P, which is 1/2 (the only such element is H). Intuitively, PX

looks at the probabilities of X taking on certain values and not necessarily which

specific elements cause X(ω) to take on those values. PX is also referred to as the

distribution or law of X.

Theorem 2.10
Pushforward PX defines a probability measure on (R,BR).

Proof. PX[Ω] = PX[R] = P[X ∈ R] = 1, since X is a real number by definition. Also,

for disjoint A1, . . . ,An ∈ BR,

PX

⋃
i

Ai

 = P

⋃
i

{ω ∈Ω|X(ω) ∈ Ai}


=

∑
i

P[{ω ∈Ω|X(ω) ∈ Ai}] =
∑
i

PX[Ai],

where the third equality follows from two facts: (1) X is a function, i.e., no ele-

ment can belong to two disjoint images at the same time, so the huge expression

corresponding to Ai are all disjoint, and (2) P itself satisfies additivity of disjoint

events.

Consider events of the form {X ≤ a} for real numbers a.

10
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Definition 2.11
Given a random variable X, its cumulative distribution function (cdf) is a

function FX : R→ [0,1] defined by

FX(a) = PX[(−∞, a)] = P[{ω ∈Ω|X(ω) ≤ a}].

CDFs are good because they describe lots of things. For example,

P[a < X ≤ b] = PX[(a,b]] = PX[(−∞,b]]−PX[(−∞, a]] = FX(b)−FX(a).

(The inclusive/exclusive bounds here don’t really matter).

Clarification on “random variable domain” vs “distribution”.

Example 2.12
Let P be the uniform measure on Ω = [0,1]. Define X(x) = x2 for x ∈ [0,1],

and let PX be the pushforward measure, or distribution of X.

In this example, P[[0,1/4]] = 1/4, since it is the uniform measure. On the other

hand, PX[[0,1/4]] = 1/2, since any ω ∈ Ω satisfying 0 ≤ ω ≤ 1/2 satisfies 0 ≤ ω2 ≤
1/4.

Definition 2.13
Let X be a random variable and FX its cdf. Then a function fX : R→ R≥0 is a

probability density function (pdf) for X if for all a,∫ a

−∞
fX(x)dx = FX(a).

The pdf is not always defined, for example, when the cdf is not differentiable.

The fundamental theorem of calculus implies that fX(a) = F′X(a).

Example 2.14
A random variable X is Bernoulli with parameter p if its domain is {0,1}with

P[X = 0] = 1− p with P[X = 1] = p. This we denote X ∼ Bern(p).

11
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The cdf of X ∼ Bern(p) is given by

FX(a) =


0 a < 0

1− p 0 ≤ a < 1

1 a ≥ 1.

Example 2.15
A random variable X is standard normal if it has pdf

fX(x) =
1
√

2π
e−x

2/2.

This we denote X ∼N (0,1).

The cdf given by

FX(x) =
∫ x

−∞
fX(x)dx

does not have a nice closed form.

2.4 Multiple Random Variables

Definition 2.16
Given two continuous random variables X,Y defined on the same probability

space, their joint density is a function fX,Y that satisfies

P[a ≤ X ≤ b,c ≤ Y ≤ d] =
∫ b

a

∫ d

c
fX,Y (x,y)dydx.

For discrete random variables X,Y , an analogous quantity is

P[X = x,Y = y] = fX,Y (x,y).

Example 2.17
Let X,Y be independent, standard normal random variables on the same

probability space. X and Y are said to be independent if their joint density

factors as a product of their marginal distributions.

12
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A few notes:

• Given a joint density function fX,Y , the marginal distributions of X and Y

are defined by integrating out the other variables, i.e.,

fX(x) =
∫

fX,Y (x,y)dy fY (y) =
∫

fX,Y (x,y)dx.

• Integrating away other variables in order to obtain the marginal distrubtions

for each individual random variable is a process called marginalization.

• In the context of Example 2.17, this definition of independence implies that

fX,Y (x,y) = fX(x) · fY (y) =
1

2π
e−x

2/2−y2/2.

Now let’s deal with simple functions of multiple random variables.

Example 2.18
Let X,Y be independent and uniform on [0,1] with joint density fX,Y (x,y) = 1

for all x,y ∈ [0,1]. Define Z = X +Y . What is the distribution of Z?

FZ(z) = P[Z ≤ z] =
"

x+y≤z
fX,Y (x,y)dxdy =

"
x+y≤z

1dxdy.

This is the area of the intersection of the unit square with x+ y < z for constant

z, so we find that FZ(z) = z2/2 when 0 ≤ z ≤ 1, FZ(z) = 1− (2− z)2/2 when z ≥ 1, and

FZ(z) = 1 when z ≥ 2. To calculate the pdf,

fZ(z) = F′Z(z) =

z 0 ≤ z ≤ 1,

2− z 1 ≤ z ≤ 2,

hence the name triangular distribution.

Example 2.19
Let X,Y be independent standard normal variables. Compute the distribu-

tion of Z = X/Y .

13
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As before, let’s compute the cdf.

FZ(z) = P[Z ≤ z] =
"

x/y≤z
fX,Y (x,y)dxdy =

"
x/y≤z

1
2π

e−x
2/2−y2/2dxdy.

Use the Jacobian to change variables to a = x/y and b = y:

∂(a,b)
∂(x,y)

=

∣∣∣∣∣∣∣
∂a/∂x ∂a/∂y

∂b/∂x ∂b/∂y


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1/y −x/y2

0 1


∣∣∣∣∣∣∣ = 1/y,

so

FZ(z) =
"

a≤z

|b|
2π

e−(ab)2/2−b2/2dbda

=
∫ z

−∞

∫ ∞
−∞

|b|
2π

e−(ab)2/2−b2/2dbda

=
1

2π

∫ z

−∞

∫ ∞
0

2eu

a2 + 1
duda

=
∫ z

−∞

1
π(a2 + 1)

da.

Note that this implies fZ(z) = 1/(π(z2 + 1)) is the pdf of Z. Finishing our com-

putation,

FZ(z) =
1
π

arctan(z) +
1
2
.

It turns out that Z follows the standard cauchy distribution.

Definition 2.20
Given a nonnegative integer random variable X with pdf px, its probability

generating function is

p(t) =
∞∑
k=0

pX(k)tk = pX(0) + tpX(1) + t2pX(2) + . . .

Lemma 2.21
If p,q, r are the probability generating functions of X,Y and Z = X+Y respec-

tively, then r(t) = p(t) · q(t).

14
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Example 2.22
What positive integer labels can we give to two fair 6-sided dice such that the

distribution of the sum of the rolls is the same as for two standard die?

For standard die C,D, their generating functions

pC(t) = pD(t) =
1
6

(t + t2 + . . .+ t6).

Therefore, the problem reduces to finding two polynomials pA(t), pB(t) satisfying

pA(t)pB(t) = pC(t)pD(t) =
1

36
t2(t + 1)2(t2 − t + 1)2(t2 + t + 1)2.

2.5 Expectation

Definition 2.23
For a discrete random variable X, its expectation is

E[X] =
∑

x∈X(ω)

xP[X = x]

if the sum converges. For a continuous random variable X,

E[X] =
∫ ∞
−∞

xfX(x)dx,

if it converges.

Theorem 2.24 (Linearity of Expectation)
Given random variables X1,X2, not necessarily independent, and constants

c1, c2,

E[c1X1 + c2X2] = c1E[X1] + c2E[X2].

Definition 2.25
Given a random variable X, its variance is defined as

σ2
X = Var[X] = E[(X −E[X])2].

15
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In practice,

Var[X] = E[(X −E[X])2] = E[X2 − 2XE[X] +E[X]2] = E[X2]−E[X]2

is an easier formula to use.

Definition 2.26
Given a random variable X, its standard deviation is defined as

σX =
√

Var[X] =
√
E[(X −E[X])2].

Standard deviation is often easier to interpret than variance, because it has the

same units as the original quantity X.

Lemma 2.27
For nonnegative X,

E[X] =
∫ ∞

0
P[X > x]dx =

∫ ∞
0

1−FX(x)dx.

Proof. ∫ ∞
0

P[X > x]dx =
∫ ∞
x=0

∫ ∞
y=x

fX(y)dydx

=
∫ ∞
y=0

∫ y

x=0
fX(y)dxdy

=
∫ ∞
y=0

yfX(y)dy = E[X].

This makes it easier to calculate expectation (in some cases).

16
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Example 2.28
The exponential distribution with rate λ is given by the pdf

pX(x) =

λe
−λx x ≥ 0

0 x < 0.

Expectation calculation using integration by parts:

E[X] =
∫ ∞

0
x ·λe−λxdx =

(
−xe−λx − 1

λ
e−λx

)∣∣∣∣∣∞
0

=
1
λ
.

Expectation calculation using the trick from above:

E[X] =
∫ ∞

0

(
1−

∫ x

0
λe−λxdx

)
dx =

∫ ∞
0

e−λxdx =
1
λ
.

Variance calculation using integration by parts:

E[X2] =
∫ ∞

0
x2 ·λe−λxdx =

(
−x2e−λx − 2x

λ
e−λx − 2

λ2 e
−λx

)∣∣∣∣∣∞
0

=
2
λ2 ,

so Var[X] = 1/λ2.

3 January 17, 2023

3.1 Independence

Definition 3.1 (Independence)
Two events A,B ∈ F are independent if

P[A∩B] = P[A] ·P[B].

Alternatively, two random variables X,Y defined on the same probability

space are said to be independent if, for any A,B ∈ BR,

P[X ∈ A,Y ∈ B] = P[X ∈ A] ·P[Y ∈ A].

17
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This definition is the same as the joint density definition that we applied last

lecture.

Theorem 3.2
For random variables X,Y defined on the same probability space, the follow-

ing are equivalent:

• P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B] for every A,B ∈ BR.

• fX,Y (x,y) = fX(x)fY (y) for every x,y ∈ R.

Proof. First assume X ∈ A and Y ∈ B. Then set A = [x+dx] and B = [y+dy] for some

small enough dx,dy such that fX , fY , fX,Y are constant over A, B, and A×B. Then,

P[X ∈ A]P[Y ∈ B] =
(∫

A
fX(a)da

)(∫
B
fY (b)db

)
= (fX(x)dx)(fY (y)dy).

But also,

P[X ∈ A,Y ∈ B] =
"

(a,b)∈A×B
fX,Y (a,b)dadb = fX,Y dxdy,

which is enough to imply that fXfY = fX,Y . Conversely, assume that fXfY = fX,Y .

Writing out the integral for P[X ∈ A,Y ∈ B], we can separate fX,Y into its two

marginal distributions and then integrate separately, which gives P[X ∈ A,Y ∈ B] =

P[X ∈ A]P[Y ∈ B].

Now we introduce mutual independence, which is a way to deal with indepen-

dence between more than just two random variables.

Definition 3.3
Random variables X1, . . . ,Xn are mutually independent if for any sets

A1, . . . ,An ∈ BR,

P

⋂
i

(Xi ∈ Ai)

 =
∏
i

P[Xi ∈ Ai].

Example 3.4
Mutual independence implies pairwise independence.
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Proof. WLOG, we show that X1 and X2 are pairwise independent. For all i ≥ 3, let

Ai = R. Since Xi ∈ Ai is always true for i ≥ 3, this implies

P

⋂
i

(Xi ∈ Ai)

 = P[X1 ∈ A1,X2 ∈ A2].

Also, P[Xi ∈ Ai] = 1 for all i ≥ 3, so the product on the right is the same as P[X1 ∈
A1]P[X2 ∈ A2]. Thus, X1 and X2 are pairwise independent.

Example 3.5
Pairwise independence does not imply mutual independence.

Let X1,X2,X3 ∈ {0,1} be the results of three independent flips of a fair coin. Let

Y1 = 0 when X2 = X3 and Y1 = 1 otherwise. Define Y2, Y3 analogously.

Yi are not mutually independent, since P[Y1 = Y2 = Y3 = 1] = 0, while P[Y1 =

1]P[Y2 = 1]P[Y3 = 1] = 1/8.

On the other hand, Yi are pairwise independent, since each pair of Yi occurs

with probability 1/4 = 1/2 · 1/2, which is also the product of their marginal distri-

butions.

3.2 Conditional Probability

Definition 3.6
Given two events A,B, the conditional probability of A given B is defined as

P[A|B] =
P[A∩B]
P[B]

.

Conditional probabilities when A and B are random variables is defined anal-

ogously.

Note that P[A|B] = P[A] when A and B are independent.

Lemma 3.7
Conditional probabilities are probability measures.

Proof. Conditional probability satisfies the two laws governing probability mea-
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sures:

• 0 ≤ P[A|B] ≤ 1.

• For disjoint events Ai ,

P


⋃

i

Ai

 |B
 =

P[(∪iAi)∩B]
P[B]

=
∑

i P[Ai ∩B]
P[B]

=
∑
i

P[Ai |B].

Theorem 3.8 (Law of total probability)
Let Y be a random variable taking discrete values y1, . . . , yn. For any event A,

P [X ∈ A] =
n∑
i=1

P[Y = yi]P[X ∈ A|Y = yi].

Proof. The events {Y = yi} partition the sample space, so

n∑
i=1

P[(X ∈ A)∩ (Y = yi)] = P[X ∈ A|(∩ni=1{Y = ai})] = P[X ∈ A].

Theorem 3.9 (Bayes’ rule)
For random variables X,Y ,

P[X |Y ] =
P[Y |X]P[X]

P[Y ]
.

3.3 Inference
Bayes’ rule is important to the field of inference, which is important for probability

statistics, information theory, machine learning, etc. Inference involves inferring

properties of some random variable (Y ) via data (X).
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Example 3.10
Most people have never had the same Uber driver twice. How can we use

this observation to estimate the number of Uber drivers in Boston?

In this case,

• X is the observation that I have never had the same uber driver twice.

• Y is the number of Uber drivers in Boston.

Let’s try guessing values for Y and seeing what happens.

Definition 3.11
Given data X = x and random variable Y to be estimated, the maximum

likelihood estimation for the value of Y is

ŷMLE = arg max
y

pX |Y (x|y).

Intuitively, we’re calculating the probability that we observe the data x (i.e., I

have never had the same Uber driver twice), over all possible values for the random

variable Y (i.e., the number of Uber drivers in Boston). Then, the value of Y that

gives us the greatest probability is our MLE.

If we’re equally likely to get any driver on every ride, the probability of our

observation assuming Y = y is

pX |Y (x|y) =
y(y − 1) · · · (y −n+ 1)

yn
.

This function is increasing in y, so ŷMLE = ∞, which is not useful. To fix this,

we can further impose a prior on Y .

Definition 3.12
Given data X = x and random variable Y to be estimated, the maximum a

posteriori (MAP) estimation for the value of Y is

ŷMAP = arg max
y

pX |Y (x|y)pY (y)
pX(x)

= arg max
y

pX |Y (x|y)pY (y).
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The prior is represented by the distribution pY (y), and represents some prior

belief that we have about the distribution of Y . For example, we know that Y must

be less than the total number of people in Boston, which is something that can

be captured by this prior distribution. The way our modified formula works is by

Bayes’ rule; we wish to maximize the probability of Y given X over all values of y,

which is the quantity inside of the arg max.

One reasonable prior we might use for this scenario is the log-normal distri-

bution, which has pdf

pY (y) =
1

yσ
√

2π
exp

(
−

(lny −µ)2

2σ2

)
.

Another example to consider:

Example 3.13
Let X1, . . . ,Xn drawn independently from N (µ,1). Also, suppose that we

know that µ should be concentrated around zero, so we can impose the mod-

eling assumption µ ∼N (0,1). What is the posterior distribution pµ|X1,...,Xn
?

Let x1, . . . ,xn, and µ0, denote the data that we observe. Each Xi is drawn inde-

pendently, so we have:

pX1,...,Xn|µ(x1, . . . ,xn|µ0) =
n∏
i=1

pXi |µ(xi |µ0)

=
n∏
i=1

1
√

2π
e−(xi−µ0)2/2.

Our prior distribution is given by pµ(µ0) ∼N (0,1). Also, the posterior function

is a function of µ0 and x1, . . . ,xn only. Since each Xi represents our data, we can treat

them like constant values with respect to our posterior distribution, and therefore

ignore terms like pX1,...,Xn
(x1, . . . ,xn) (this value is constant for fixed data). Applying
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Bayes’ rule, we now have

pµ|X1,...,Xn
(µ0|x1, . . . ,xn) ∝ pX1,...Xn|µ(x1, . . . ,xn|µ0)pµ(µ0)

∝ exp

−1
2

n∑
i=1

(xi −µ0)2 − 1
2
µ2

0


∝ exp

n+ 1
2

(
µ0 −

∑n
i=1 xi
n+ 1

)2 ,
which comes from expanding and completing the square with respect to µ0 (and

absorbing terms into the proportionality). This implies

pµ|X1,...,Xn
(µ0|x1, . . . ,xn) ∝N

( n
n+ 1

x,
1

n+ 1

)
.

Intuitively, this makes sense. With no prior, we expect the distribution of µ to

be centered around x, since this is the only data we are given. Given the prior, i.e.,

the expectation that µ is actually distributed normally around 0, the center of the

posterior distribution is pulled closer to zero.

3.4 Discrete Conditioning

Definition 3.14
Two events A,B are conditionally independent given C if

P[A∩B|C] = P[A|C] ·P[B|C].

Analogously, let X,Y ,Z be random variables. X and Y are conditionally in-

dependent given Z if for any A,B,C ∈ BR,

P[X ∈ A,Y ∈ B|Z ∈ C] = P[X ∈ A|Z ∈ C] ·P[Y ∈ B|Z ∈ C].

Example 3.15
Consider the same coin flipping example as previously.

Y1,Y2 are conditionally independent given X3, since knowing the result of X3

provides no information in deducing Y1 or Y2. However, Y1 and Y2 are not condi-

tionally independent given Y3, since given Y3 = 1, it is not possible for Y1 = 1 and
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Y2 = 1.

Example 3.16
Conditional independence does not imply marginal independence.

Consider two coins, one fair and the other with two heads. Let Z denote a

random choice of either coin. Then, let X, Y denote two flips of this coin. Given

Z, X and Y are independent, so X and Y are conditionally independent on Z.

On the other hand, they are not marginally independent; given that X is heads,

the probability that the coin with two heads was chosen is 2/3, and therefore the

probability that Y is also heads increases.

Example 3.17
Marginal independence does not imply conditional independence.

Let X and Y be the outcomes of two flips of a fair coin. If Y = H , Let Z = X;

otherwise, let Z =!X. X and Z are marginally independent with no information

about Y . On the other hand, given Y , X and Z are no longer independent, so X and

Z are not conditionally independent.

Definition 3.18
Given discrete random variables X,Y , the conditional expectation of X

given Y is

E[X |Y ] =
∑

x∈X(Ω)

xP[X = x|Y ].

The analogous statement for continuous random variables is

E[Y |X = x] =
∫
R
yfY |X(y,x)dy,

where fY |X(y,x) is the conditional density of Y given X = x.

The conditional density satisfies

fX,Y (x,y) = fY |X(y,x)fX(x) = fX |Y (x,y)fY (y),

where fX,Y (x,y) is the joint density of X and Y . Also note that E[X |Y ] is a function
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of Y , so this quantity is itself also a random variable.

Definition 3.19
The conditional variance of X given Y is

Var[X |Y ] = E[(X −E[X |Y ])2|Y ].

Lemma 3.20 (Self-conditioning)
Given random variable X and deterministic function f , then

E[f (X)|X] = f (X).

Proof. Assume X = y. Then

E[f (X)|X = y] =
∑

x∈f (X)(Ω)

xP[f (X) = x|X = y].

All probabilities are zero unless x = f (y), in which case the probability is 1, so

E[f (X)|X = y] = f (y).

Since this is true for any possible value of X, E[f (X)|X] = f (X), as desired.

Proposition 3.21 (Conditional Linearity of Expectation)
For any real constants c1, c2 and random variables X1,X2,Y , linearity of con-

ditional expectation holds. That is,

E[c1X1 + c2X2|Y ] = c1E[X1|Y ] + c2E[X2|Y ].

Example 3.22
Let X,Y be the results of two independent rolls of a fair 6-sided die, and let

Z = X +Y . Compute E[X |Z] and Var[X |Z].

By symmetry, E[X |Z] = Z/2. Now the variance:

Var[X |Z] = E[(X −E[X |Z])2|Z] = E[(X −Z/2)2|Z].
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OK, now this is ugly. Given Z, X ranges on an interval from max(1,Z − 6) to

min(6,Z − 1), inclusive. Say that this interval has start a and end a + ℓ − 1. Then

Z = 2a+ ℓ − 1, and summing (X −Z/2)2 over this interval gives us

∑
x

(x −Z/2)2 =
ℓ∑

i=1

(
−ℓ + (2i − 1)

2

)2

= 2
ℓ−(2i−1)>0∑

i=1

(
l − (2i − 1)

2

)2

.

If ℓ is odd, then we’re just summing the first ((ℓ − 1)/2) squares, in which case∑
x

(x −Z/2)2 = 2
(ℓ − 1)/2 · ℓ · (ℓ + 1)/2

6
=

1
12

ℓ(ℓ2 − 1).

If ℓ is even, then

2
ℓ−(2i−1)>0∑

i=1

(
l − (2i − 1)

2

)2

=
1
2

ℓ−(2i−1)>0∑
i=1

(ℓ − (2i − 1))2,

which is the sum of the odd squares from 1 to (ℓ − 1), which is also the sum of the

first (ℓ−1) squares, minus the sum of the even squares from 2 to (ℓ−2). Therefore,

∑
x

(x −Z/2)2 =
1
2

(
ℓ(ℓ − 1)(2ℓ − 1)

6
− 4 · (ℓ − 2)/2 · (ℓ/2) · (ℓ − 1)

6

)
=

1
12

ℓ(ℓ2 − 1).

The sum turns out to be the same in both cases. Since the length of the interval

is ℓ, the expected value is (ℓ2 − 1)/12. Therefore,

Var[X |Z] = E[X −Z/2|Z] = ((min(6,Z − 1)−max(1,Z − 6) + 1)2 − 1)/12.

3.5 Continuous Conditioning
Polar coordinates are a thing. Let (X,Y ) be drawn from a probability distribution

on the plane, and define (R,Θ) so that

X = RcosΘ,Y = Rsinθ,0 ≤ R,0 ≤Θ < 2π.

By the Jacobian,

pR,Θ(r,θ) = rpX,Y (x,y).
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Example 3.23
Let (X,Y ) be a randomly chosen point in the interior of the unit disc. Com-

pute E[X2 +Y 2].

We know pX,Y (x,y) = 1/π is uniform, so pR,Θ(r,θ) = rpX,Y (r cosθ,r sinθ) = r/π.

Notice that this factors:

pR(r) = 2r and pΘ(θ) =
1

2π
,

hence R and Θ are independent. Now, our expectation is

E[X2 +Y 2] = E[R2] =
∫ 1

0
r2(2rdr) =

1
2
.

Example 3.24
In the notation of the previous example, evaluate E[X2 +Y 2|X].

By the self-conditioning Lemma, E[X2|X] = X2, so it suffices to compute E[Y 2|X].

This can be computed by first computing the density fY |X(y,x) = fX,Y (x,y) · fX(x),

and then integrating

E[Y 2|X] =
∫

y2fY |X(y,x)dy.

Example 3.25
Compute the Beta integral

Ia,b =
∫ 1

0
xa(1− x)bdx.

Let X1, . . . ,Xa+b+1 be independent and identically distributed random variables

in [0,1], all uniform. Let E be the event that X1 is the (a+ 1)th smallest among the

Xi . Then,

P[E|X1 = x] =
(
a+ b
a

)
xa(1− x)b,

since P[Xi ≤ x] = x for uniform variables, and we need to choose a to be less than

X1. Also, the pdf of X1 is constant, i.e., pX1
(x) = 1, since X1 is uniformly distributed.
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Therefore, by the law of total probability,

P[E] =
∫ 1

0
P[E|X1 = x]pX1

(x)dx =
(
a+ b
a

)
Ia,b.

On the other hand, by symmetry, P[E] = 1/(a+ b+ 1). Therefore,

Ia,b =
1

(a+ b+ 1)
(a+b

a

) =
a!b!

(a+ b+ 1)!
.
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4.1 Correlation

Definition 4.1
The covariance of two random variables X,Y is given by

Cov(X,Y ) = E[(X −E[X])(Y −E[Y ])] = E[XY ]−E[X]E[Y ].

Approximately, covariance measures the strength of the linear relationship be-

tween X and Y , e.g., whether or not greater values of X corresponds to greater

values of Y and vice versa. When X = Y , Cov(X,Y ) = Var(X). In some sense, it

can be thought of as a weaker version of independence, since it captures linear

dependence, but not dependence in full generality.

Lemma 4.2
If X,Y are independent, then Cov(X,Y ) = 0.

Proof. E[XY ] = E[X]E[Y ] when X and Y are independent.

Lemma 4.3
The converse is not true.

Proof. Let X ∼ U [−1,1] and Y = X2 so that X,Y are not independent. On the other

hand,

Cov(X,Y ) = E[X3]−E[X]E[X2] = 0.

28



Andrew Liu January 19, 2023

Covariance allows us to capture linear sums of variances:

Lemma 4.4
For random variables X,Y ,

Var[X +Y ] = Var[X] + Var[Y ] + 2Cov(X,Y ).

Proof.

Var[X +Y ] = E[(X +Y −E[X +Y ])2]

= E[((X −E[X]) + (Y −E[Y ]))2]

= Var(X) + Var(Y ) + 2Cov(X,Y ).

Properties of covariance:

• Cov(X,a) = 0

• Cov(X,X) = Var[X]

• Cov(X,Y ) = Cov(Y ,X)

• Covariance is bilinear: Cov(aX+bY ,cZ+dW ) = acCov(X,Z)+adCov(X,W )+

bcCov(Y ,Z) + bdCov(Y ,W ).

Example 4.5
Let S be drawn uniformly at random among all subsets of size k of [n]. For

each 1 ≤ i ≤ n, Xi = 1 if i ∈ S and Xi = 0 otherwise. Find Cov(X1,X2).

By symmetry, Cov(Xi ,Xj ) are equal for all i , j. Also, Xi ∼ Bern(k/n), so Var[Xi] =

k/n− (k/n)2 = k(n− k)/n2. Using Var[a] = 0,

0 = Var[k] = Var[X1 + . . .+Xn] = nVar[X1] + 2
(
n
2

)
Cov(X1,X2).

Therefore,

Cov(X1,X2) =
−k(n− k)
n2(n− 1)

.
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Intuitively, it makes sense that this quantity is negative, since, if we are given

that X1 = 1, the probability that X2 is also 1 decreases.

Definition 4.6
The correlation between X,Y is defined as

ρ(X,Y ) =
Cov(X,Y )√

Var[X] ·Var[Y ]
.

Correlation can be thought of as a normalized version of covariance, in the

sense that correlation is immune to scaling: ρ(aX,bY ) = ρ(X,Y ) for constants a,b.

Correlation is also dimensionless.

Lemma 4.7 (Translation invariance)
For constants a,b, ρ(X + a,Y + b) = ρ(X,Y ).

Lemma 4.8
For any random variables X,Y , |ρ(X,Y )| ≤ 1.

Proof. By translation invariance, shift everything so that E[X] = E[Y ] = 0. Then

Cov(X,Y ) = E[XY ], Var[X] = E[X2], and Var[Y ] = E[Y 2], so we want to show

E[XY ] ≤
√
E[X2]E[Y 2]. To do so, we can apply Cauchy-Schwarz to the pair of

functions (x
√
pX,Y (x,y), y

√
pX,Y (x,y)):

E[XY ] =
"

R2
xypX,Y (x,y)

≤

√("
R2

x2pX,Y (x,y)dydx
)("

R2
y2pX,Y (x,y)dydx

)

=

√("
R
x2pX(x)dx

)("
R
y2pY (y)dy

)
=

√
E[X2]E[Y 2].
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Example 4.9
Let A,B,C be random variables with ρ(A,B) = ρ(A,C) = 0.5. What are the

possible values of ρ(B,C)?

Shift and scale so that σA = σB = σC = 0 and Var(A) = Var(B) = Var(C) = 1. When

B = C, ρ(B,C) = Cov(B,C)/ Var(B) = 1. Also, if we consider the random variable

B+C −A:

Var[B+C −A] = Var[B] + Var[C] + Var[−A]+

2(Cov(B,C) + Cov(B,−A) + Cov(C,−A))

= 3 + 2(ρ(B,C)− ρ(A,B)− ρ(A,c))

= 1 + 2ρ(B,C).

Since Var[B+C −A] ≥ 0, ρ(B,C) ≥ −1/2. To show that all values in between are

attainable, let A ∼ N (0,1), X ∼ N (0, t), and Y ∼ N (0,1 − t) to be independent for

t ≤ 1. Then, let

B =
A
2

+

√
3

2
(X +Y ), C =

A
2

+

√
3

2
(X −Y ).

Note that E[B] = E[C] = 0. Also, since every variable is chosen independnetly,

linearity of variance implies Var(B) = Var(C) = (1/2)2 + (
√

3/2)2 = 1. Now,

ρ(B,C) = Cov(B,C)

= E
[(
A
2

+

√
3

2
(X +Y )

)(
A
2

+

√
3

2
(X −Y )

)]
=

3t − 1
2

.

By construction, this works for any 0 ≤ t ≤ 1, so we’re done.

Definition 4.10
Given random variables X1, . . . ,Xn, their covariance matrix is defined as the

n×n matrix K , whose entry Kij is defined to be Cov(Xi ,Xj ).

• Diagonal entries are the variances of each Xi .

• The covariance matrix is positive semidefinite.
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Definition 4.11
A real n×n matrix A is positive-semidefinite if, for any vector x, the quantity

xtAx is nonnegative. This is equivalent to A having nonnegative eigenvalues.

4.2 The indicator method

Theorem 4.12 (Linearity of Expectation)

E[X +Y ] = E[X] +E[Y ].

Proof.

E[X +Y ] =
"

(x+ y)px,y(x,y)dxdy

=
"

xpx,y(x,y)dxdy +
"

ypx,y(x,y)dxdy

=
∫

xpxdx+
∫

ypydy

= E[X] +E[Y ].

Example 4.13
n people put their hats into a bag. They take turns drawing a random hat

from a bag. Compute the expectation and variance of the number of people

who get their original hat back.

To compute the variance, we need E[X2]. We can compute this using a decom-

position trick.

E[(X1 + . . .+Xn)2] =
∑

1≤i,j≤n
E[XiXj ].

When i , j, P[XiXj ] = 1 is 1/(n · (n − 1)). When i = j, P[XiXj ] = 1/n. Therefore,

E[X2] = n(n− 1)/(n(n− 1)) +n/n = 2, so Var[X] = E[X2]−E[X]2 = 1.
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Example 4.14 (Coupon collector’s problem)
Consider a cereal box contest in which each box of cereal contains one of n

different types of coupons, and one must collect one of every coupon to win.

Let T be the number of boxes we must open to win. Compute E[T ].

Let Zk be the amount of time it takes to aquire the (k + 1)th new coupon. Note

that E[Zk] = n/(n − k), since on each draw the probability that you get a new type,

having already collected k types, is (n−k)/n. Also, T =
∑
Zk , so we can use linearity

of expectation to get

E[T ] = E

n−1∑
k=1

Zk

 = n
n−1∑
k=1

1
k
≈ n logn.

4.3 Results on conditional expectations

Lemma 4.15
For independent random variables X, Y and any deterministic function f ,

E[Y f (X)|X] = f (X)E[Y ].

Proof. When X and Y are independent, fY |X(y|x) = fY (y). So,

E[Y f (X)|X = x] =
∫
R
yf (x)fY (y)dy

= f (x)E[Y ].

Since this holds for any x ∈ X(Ω), we are done.

Lemma 4.16
For random variables X,Y and deterministic function f ,

E[E[f (Y )|X]|X] = E[f (Y )|X].

Remember that E[X |Y ] is a function of Y , so it is itself a random variable, and

we may therefore compute the expectation and variance of this quantity.

The next two theorems are dubbed the tower laws.
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Theorem 4.17 (Law of total expectation)
For random variables X,Y where E[X] is finite,

E[E[X |Y ]] = E[X].

This can be generalized:

E[f (Y )E[X |Y ]] = E[f (Y )X],

for deterministic function f .

Recall that E[X |Y ] is the expected value of X given a prior Y . The law of total

expectation says that the best prediction that we can make for X across all possible

priors is E[X], which is the same as the value that we predict X to have with no

priors.

Theorem 4.18 (Law of total variance)
For random variables X,Y with finite Var[X],

Var[X] = VarY [EX[X |Y ]] +EY [VarX[X |Y ]].

(Subscripts denote what to take expectation/variance over).

Example 4.19
Start with a distribution X with mean µ and standard deviation σ . Then, raise

µ by 20% with probability 0.5. Compute the expected value and variance of

X after this takes place.

Let Y be the distribution of X after applying the changes.

E[Y ] = EX[EY [Y |X]] = EX[1.1X] = 1.1µ.

Using the law of total variance,

Var[Y ] = 0.01µ2 + 1.22σ2.
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4.4 Moment generating functions
The expression E[Xk] is called the k-th moment of X. The first moment of X is

its mean. The second moment is the variance (when the mean is normalized). The

third and fourth moments are called skew and kurtosis. Each moment is significant

in some way.

Definition 4.20
The moment generating function (mgf) of a random variable X is defined to

be the function

MX(t) = E[etX]

for values of t where the expectation is defined. If the only such value is t = 0,

then X does not have an mgf.

Lemma 4.21
For each k,

E[Xk] =
dk

dtk
M(t)

∣∣∣∣∣
t=0

= M(k)(0).

Proof.

E[etX] = E

∑
i≥0

(tX)i

i!

 .
Taking k derivatives and setting t = 0, everything dies except for Xk , hence done.

Lemma 4.22
For independent X,Y ,

MX+Y (t) = MX(t)MY (t)

for all t.

Proof. X,Y independent implies that etX and etY are also independent, given fixed

t. Therefore,

MX+Y (t) = E[etX+tY ] = E[etX]E[etY ]] = MX(t)MY (t).

35



Andrew Liu January 24, 2023

Example 4.23
Let X follow the geometric distribution with parameter p, i.e.,

P[X = k] = (1− p)k−1p

for k ≥ 1. Compute Var(X).

The key here is to know how to cleanly evaluate E[X2]. One approach is to

compute the moment generating function MX(t) as follows:

MX(t) = E[etX] =
∑
k≥1

(1− p)k−1pekt =
pet

1− (1− p)et
.

Then, take some derivatives. The other approach is to use a nested geometric series.

Both are ugly.

5 January 24, 2023

5.1 Stochastic Processes

Definition 5.1
A stochastic process {Xt}t∈T is a collection of random variables Xi , where

the index t is some element of an index set T . For continuous stochastic

processes, T is often R≥0, and for the discrete processes, T is often Z≥0.

Definition 5.2 (Sojourn time)
For some stochastic process {Xt}t∈T , let S = {W1,W2, . . .} be the set of indices at

which XWi
is equal to a predetermined value K . Each Wm is called a waiting

time, and represents the duration of time between the beginning of the pro-

cess and the mth success. Each gap between waiting times Sm = Wm −Wm−1

is called a Sojourn time.
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5.2 Counting distributions

Definition 5.3
A Bernoulli random variable X ∼ Bern(p), with 0 ≤ p ≤ 1, has discrete pmf

fX(0) = 1− p, fX(1) = p.

In other words, a beroulli random variable with paramater p represents a bi-

nary outcome with probability p of resolving successfully. Naturally, E[X] = p and

Var[X] = p − p2.

Example 5.4
Two weighted coins have probability p,q of landing heads. After the first

coin is flipped, the second coin is flipped only if the first coin was heads;

otherwise, it is not flipped. Compute the variance in the outcome of the

second coin.

The outcome of the second coin being heads or not can be modelled by a Bernoulli

random variable with parameter pq. Therefore, the variance is pq(1− pq).

Definition 5.5
A Bernoulli process is a discrete-time stochastic process of finite or infinite

i.i.d (independent identically distributed) Bernoulli random variables.

For example, a Bernoulli process may be a sequence of coin flips. The famous

binomial distribution measures the number of successes in a Bernoulli process.

Definition 5.6
A binomial random variable X ∼ B(n,p) has discrete pmf

fX(k) =
(
n
k

)
pk(1− p)n−k ,

for k ∈ {0, . . . ,n}.

Binomial random variables measure Bernoulli processes of length n, whose in-

dividual Bernoulli trials all have parameter p. Since each Bernoulli trial is inde-

pendent, linearity of expectation and linearity of variance implies that E[X] = np,
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Var[X] = np(1− p).

Lemma 5.7
Let X ∼ B(n,p) and Y ∼ B(m,p) be independent binomial random variables.

Then Z = X +Y is distributed as B(n+m,p).

Proof.

fZ(k) =
k∑

i=0

fX(i)fY (k − i)

=
k∑

i=0

((
n
i

)
pi(1− p)n−i

)((
m

k − i

)
pk−i(1− p)m−k+i

)

= pk(1− p)n+m−k
k∑

i=0

(
n
i

)(
m

k − i

)
=

(
n+m
k

)
pk(1− p)n+m−k .

Lemma 5.8
Let X ∼ B(n,p) and Y ∼ B(X,q) be independent binomial random variables.

Then Y ∼ B(n,pq).

Proof. Intuitively, this setup is the same as the following: flip a coin n times with

probability p of getting heads. For each head, flip another coin with probability q

of getting heads. Since you only get both heads with probability pq, it makes sense

that Y is the same as B(n,pq). More rigorously,
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P[Y = m] =
n∑

k=0

P[X = k] ·P[Y = m|X = k]

=
n∑

k=m

(
n
k

)
pk(1− p)n−k

(
k
m

)
qm(1− q)k−m

=
n∑

k=m

(
n
m

)(
n−m
k −m

)
pk(1− p)n−kqm(1− q)k−m

= . . .

=
(
n
m

)
(pq)m(1− pq)n.

Definition 5.9
A hypergeometric random variable X ∼ Hypergeom(N,K,n) models a se-

quence of Bernoulli trials that takes place without replacement. This is in

contrast to binomial random variables, which model Bernoulli trials with re-
placement. The parameters represent the drawing of n objects out of total

possible N different objects, where K of them represent “successful” objects.

The discrete pmf is given by

fX(k) =
(K
k

)(N−K
n−k

)(N
n

) .

This expression represents the probability that you select k successful objects out of

K possible successful objects and n−k non-successful objects out of N −K possible

non-successful objects.

We also have that

E[X] = n · K
N

and Var[X] =
nK(N −K)(N −n)

N2(N − 1)
.
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Example 5.10
Acceptance sampling is a techniqued used for quality control. The process

of acceptance sampling involves drawing smaller samples from a larger pool

of objects, and accepting or rejecting the entire pool of objects based on the

result of the smaller sample. For example, choosing to accept or reject a lot

of 1000 toy trucks based on a smaller sample of 100. Given that 50 of these

trucks are defective, the probability that we see more than 5 in our sample

can be modeled by a hypergeometric distribution.

5.3 Waiting Times

Definition 5.11
Geometric distrubtions model the Sojourn times in a Bernoulli process. That

is, they measure the times between consecutive successes.

Definition 5.12
Let X ∼Geom(p). Then the discrete pmf

fX(k) = (1− p)k−1p.

The discrete cdf is given by

FX(k) =
k∑

i=1

(1− p)ip = 1− (1− p)k .

Note that this definition is inclusive on the first successful trial itself, i.e., fX(k)

represents the probability that the first k−1 trials fail, and the kth trial is a success.

Lemma 5.13 (Memorylessness)
For geometric random variable X,

P[X > n+m|X > n] = P[X > m].
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Lemma 5.14
Let X1, . . . ,Xn be geometric random variables distributed as Xi ∼Geom(pi). If

Y = min
1≤k≤n

Xk , then

Y ∼Geom

1−
n∏
i=1

(1− pi)


Proof. The probability that at least one event happens is equal to the complement

of none of them happening.

Definition 5.15
Let X ∼NB(r,p) be a negative binomial random variable. Then the discrete

pmf

fX(k) =
(
k − 1
r − 1

)
pr(1− p)k−r .

Negative binomial distributions measure the value of Wr , i.e., the waiting time

for the r-th success.

Lemma 5.16

NB(r,p) ∼
r∑

i=1

Geom(p).

Proof. Negative binomial distributions measures total waiting times, while geo-

metric distributions measure the time between each waiting time. By the memo-

rylessness property of geometric distributions, Sojourn waiting times are indepen-

dent.

By linearity of expectation and variance (for independent random variables),

this implies

E[X] =
r
p

and Var[X] =
r(1− p)

p2

when X ∼NB(r,p).
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5.4 Continuous Time Distributions
Here we explore the continuous analogues of binomial and geometric distributions:

Poisson and Exponential distributions, respectively.

Definition 5.17
A poisson random variable X ∼ Pois(λ) is said to have “rate” λ > 0 and dis-

crete pmf

fX(k) =
λke−λ

k!
.

Suppose X ∼ B(n,p). Now fix λ = np (recall that this is the expected number of

successes over some number of trials), and increase n arbitrarily large; in the limit,

n→∞ and p→ 0. Now,

fX(k) = lim
n→∞

(
n
k

)
pk(1− p)n−k

= lim
n→∞

n(n− 1) . . . (n− k + 1)
k!

pk
(
1− λ

n

)n−k
=
λk

k!
· e−λ,

hence we recover the Poisson distribution. This is considered to be the continuous

time limit of the binomial distribution in the sense that we maintain the mean

number of successful trials in a given time period, but the Poisson distribution is

running infinitely many trials. Given X ∼ Pois(λ), we also have

E[X] = Var[X] = λ,

which makes sense intuitively, since E[X] = np = λ and Var[X] = np(1 − p) = λ in

the limit when n→∞ and p→ 0.

Example 5.18 (binomial approximation with poisson)
When n is large, p is small, and λ = np is medium-sized, using Y ∼ Pois(np)

can be a good approximation for X ∼ B(n,p). In general, it’s a lot easier to

calculate fY (k) vs. fX(k) for any particular k.

42



Andrew Liu January 24, 2023

Lemma 5.19
Let Xi ∼ Pois(λi) be independent. Then Y =

∑n
i=1Xi ∼ Pois(

∑n
i=1λi).

Proof.

P[X1 + . . .+Xn = k] =
∑

x1+...+xn=k

n∏
i=1

λxi
i e
−λi

xi !


=

∑
x1+...+xn=k

e−λ1−...−λn

k!

(
k

x1, . . . ,xn

) n∏
i=1

λxi
i

=
e−λ1−...−λn

k!
(λ1 + . . .λn)k .

Definition 5.20
A Poisson process with rate λ > 0 is defined over the positive reals satisfying:

(1) For any strictly increasing non-negative t0, t1, . . . , tm, X(ti+1) −X(ti) are

all independent random variables.

(2) The random variable X(s + t)−X(s) ∼ Pois(λt) (for t > 0). In words, the

distribution of the number of events along any interval only depends

on the length of the interval.

(3) X(0) = 0.

This definition is equivalent to the following reformulation:

Definition 5.21
Let N (a,b] be a random variable that counts the number of events along the

interval (a,b]. N is a Poisson point process with rate λ if:

(1) For any strictly increasing non-negative t0, . . . , tm, N (ti , ti+1] are all in-

dependent.

(2) N (s, t] ∼ Pois(λ(t − s)) (for t > 0).

Some key facts about Poisson processes:
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• Given the total number of events that occur along an interval, the distribution

of those events along the interval is uniformly distributed.

• Due to the first fact, given the number of events that occur along an interval,

the number of events that occur along subintervals of that interval follows

a binomial distribution. For example, if you know that 10 events occurred

4 times in one hour, the probability that 3 of them occurred in the first 15

minutes is given by
(10

3
)
(.25)3(.75)7.

• Poisson Splitting: If {X(t)} is a Poisson process with rate λ, say we “split”

each successful event into a type 1 event with probability p, and a type 2

event with probability (1 − p). Then, the processes that contains only events

of type 1 is also a Poisson process with rate λp. The process that contains

only events of type 2 is a Poisson process with rate λ(1− p)

• Poisson Superposition: Let {X1(t), . . . ,Xn(t)} be Poisson processes with rates

λ1, . . . ,λn, respectively. The union of all of these processes is also a Poisson

process with rate λ1 + . . .+λn.

Finally, the exponential distribution is the last distribution we cover. Like the

Poisson distribution is the continuous analogue of the binomial distribution, the

exponential distribution is the continuous analogue of the geometric distribution.

Definition 5.22
An exponential random variable X ∼ Exp(λ) has continuous pdf

fX(k) = λe−λk .

It has cdf

FX(k) = 1− e−λk .

6 January 26, 2023

7 January 31, 2023
The goal of asymptotics is to study the limiting behavior of random variables. For

example, does the mean of independent observations of the same random variable
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converge? What is the approximate distribution of sample means if we have a lot

of different samples?

7.1 Modes of Convergence

Definition 7.1 (Convergence in Distribution)
Consider a sequence of random variables X1, . . . , and another random vari-

able X. Let F(x) denote the cdf of X, and Fn(x) for Xn. We say that Xn con-

verges in distribution to X if, for every x at which F is continuous,

lim
n→∞

Fn(x) = F(x).

Usually, this is denoted

Xn
d−→

n→∞
X.

Example 7.2
Let Y1, . . . be a sequence of independent random variables distributed uni-

formly on [0,1]. Let Xn = max1≤i≤nYi . Then the random variable n(1 −Xn)

converges in distribution to a random variable with distribution Exp(1).

To show that this is true, we first compute the cdf of the random variable that

is converging.

Fn(x) = P[n(1−Xn) ≤ x]

= P[Xn ≥ 1− x/n]

= 1−P[Xn ≤ 1− x/n]

= 1−
(
1− x

n

)n
.

In the limit, this is equal to 1 − e−x, which is the cdf for a random variable with

distribution Exp(1), so we are done.

Convergence in distribution was only concerned about the long-run behavior

of the cdf. Convergence in probability is stronger in the sense that the random

variables must also get close to the target random variable.
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Definition 7.3 (Convergence in Probability)
Consider a sequence of random variables X1, . . . , and another random vari-

able X. We say that Xn converges in probability to X if, for all ε > 0,

lim
n→∞

P(|Xn −X | > ε) = 0.

Usually, this is denoted

Xn
p
−→
n→∞

X.

Example 7.4
Consider the sequence of random variables X1, . . . where Xn ∼ Exp(n). Then,

Xn
p
−→
n→∞

0.

Note that Xn is nonnegative, so

P[|Xn − 0| > ε] =
∫ ∞
ϵ

ne−nxdx = e−nε.

Taking the limit as n goes to infinity, this approaches zero.

Example 7.5
Convergence in distribution does not imply convergence in probability. De-

fine Xn with X0 = Unif[0,1], and

Xn =

X0 n even

1−X0 n odd.

This sequence converges in distribution to X0, since they’re all uniformly dis-

tributed. On the other hand, they don’t converge in probability to any random

variable X. Intuitively, this is because the sequence oscillates, whereas any random

variable represents a function that outputs one value.
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Definition 7.6 (Almost sure convergence)
A sequence of random variables X1, . . . , converges almost surely to a random

variable X if

P
(

lim
n→∞

Xn = X
)

= 1.

Usually, this is denoted

Xn
a.s.−→

n→∞
X.

This is the strongest sense of convergence. Almost sure convergence implies

convergence in probability, which implies convergence in distribution.

Example 7.7
Consider the sequence of random variables X1, . . . where Xn = 0 with proba-

bility 1/n2 and Xn = 1 otherwise. Then, Xn
a.s.−→

n→∞
1.

The Borel-Cantelli Lemma gives us that: if sum of the probabilities of an infi-

nite number of events is infinite, then the probability of infinitely many of them

occurring is 1. On the other hand, if their sum is finite, then the probability of

infinitely many of them not occuring is 1. In this case, since
∑

1/n2 is finite, the

probability that infinitely many Xi are 0 is 0. This implies that, with probability 1,

there are infinitely many Xi = 1, so Xn converges almost surely to 1.

Example 7.8
Almost sure convergence does not imply convergence in probability. Con-

sider the previous example, modified so that Xn = 0 with probability 1/n and

Xn = 1 otherwise.

Xn converges in probability to 0, since limn→∞1/n = 0. On the other hand, the

Borel-Cantelli Lemma implies that Xn does not converge almost surely to 0.
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Definition 7.9 (Convergence in Lp norm)
A sequence of random variables X1, . . . converges in the Lp-norm to a random

variable X, for some p ≥ 1, if

lim
n→∞

E[|Xn −X |p] = 0,

given that their respective p-th absolute moments exist.

Lemma 7.10
Convergence in the Lq norm implies convergence in the Lp norm for q > p.

Proof. Note that xp/q is concave down. Therefore, by Jensen’s,

E[|Xn −X |p] = E[(|Xn −X |q)p/q] ≤ E[(|Xn −X |)q]p/q.

Taking the limit on both sides finishes.

Lemma 7.11
Convergence in the Lp norm implies convergence in probability.

Proof. By Markov’s inequality,

P[|Xn −X | > ε] = P[|Xn −X |p > εp] ≤ E[|Xn −X |p]
εp

.

Taking the limit finishes.

There isn’t a good way to compare convergence in the Lp norm and convergence

almost surely. (?)

7.2 Law of Large Numbers
Intuitively, when we are trying to determine the mean of a random variable X,

taking more samples will generally give a better estimate for the mean. Why is this

the case?
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Theorem 7.12 (Weak Law of Large Numbers)
Consider a sequence of independent and identically distributed random vari-

ables X1, . . . with finite expectation E[X]. Denote the sample mean

Xn =
1
n

n∑
i=1

Xn.

Then, Xn
p
−→
n→∞

E[X]. This is equivalent to saying that for any ε,δ > 0, there

exists n where

P[|Xn −E[X]| > ε] < δ.

Example 7.13
Let X1, . . . , be a sequence of independent random variables with E[Xi] = µ

and the variance of each term is finite. Let Yk = XkXk+1 for every k. Prove

that
1
n

n∑
k=1

Yk
p
−→
n→∞

µ2.

By the weak law of large numbers,

2
n

(Y1 +Y3 + . . .)
p
−→
n→∞

µ2

2
n

(Y2 +Y4 + . . .)
p
−→
n→∞

µ2.

Averaging gives the desired result. Note that splitting the sum like this is necessary,

since we require every “sample” to be independent.

Theorem 7.14 (Strong Law of Large Numbers)
Consider a sequence of independent and identically distributed random vari-

ables X1, . . . with finite expectation E[X]. Then Xn
a.s.−→

n→∞
E[X].

With probability one, the sample mean approaches the actual mean.
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7.3 Central Limit Theorem

Theorem 7.15 (Central Limit Theorem)
For a sequence of independent, identically distributed random variables

X1, . . . , with finite expectation E[X] and variance σ2, it holds that

√
n(Xn −E[X])

σ
d−→

n→∞
N (0,1).

Important: this holds for any random variable. The sample means are normally

distributed, always. Intuitively, the more samples you have, the variance decreases

from the mean (σ2→ σ2/n).

Example 7.16
We roll a fair die 100 times. What is the probability that the average roll is at

most 3?

By the central limit theorem, we can the sample means to be normally dis-

tributed. The variance of a dice roll is 35/12, so σ =
√

35/12. The z-statistic is

therefore given by

z =
Xn −E[X]
σ/
√
n
≈ −2.9.

Therefore,

P[X ≤ 3] = P[z ≤ −2.9] = 0.17%.

Example 7.17
Consider 10 numbers X1, . . . ,X10 drawn independently and uniformly at ran-

dom from [0,100]. Let A be their sum, rounded. Let B be the sum of their

rounded values. Use the central limit theorem to approximate the probabil-

ity that A = B.

Write Xi = Ki + εi , where Ki is Xi rounded to the nearest integer. εi is uniform,

so

A = B ⇐⇒ ε1 + . . .+ ε10 ∈ [−0.5,0.5].
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By the central limit theorem,

n∑
i=1

εi
d−→

n→∞
N (0,nσ2),

so we may approximate our probability as

P[−0.5 ≤N (0,5/6) ≤ 0.5] ≈ 0.42.

7.4 Slutsky and Borel-Cantelli

Theorem 7.18 (Slutsky’s Theorem)
Consider two sequences of random variables Xn and Yn, where Xn

d−→
n→∞

X and

Yn
p
−→
n→∞

c, where c is a constant. Then,

(1) Xn +Yn
d−→

n→∞
X + c

(2) XnYn
d−→

n→∞
cX

(3) Xn/Yn
d−→

n→∞
Xn/c, if c , 0.

These results should feel intuitive.

Example 7.19
Let Xi ∼Unif[−1,1]. Let

Zn =

√
n
∑n

k=1Xk∑n
k=1(X2

k +X3
k )
.

Prove that Zn
d−→

n→∞
N (0,3).

By the central limit theorem,

1
√
n

n∑
k=1

Xk
d−→

n→∞
N (0,σ2).
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By the weak law of large numbers,

1
n

∑
k=1n

(X2
k +X3

k )
p
−→
n→∞

E[X2
k +X3

k ] = 1/3.

Therefore, by Slutsky,

Zn
d−→

n→∞
N (0,9σ2) =N (0,3).

Theorem 7.20 (Borel-Cantelli)
Let E1, . . . , be a sequence of events in some probability space. If

∞∑
i=1

P[Ei] <∞,

then, with probability 1, only a finite number of events will occur. This is the

same as saying

P

 ∞⋂
i=1

∞⋃
j=1

Ej

 = 0.

7.5 Bounding Methods

Lemma 7.21 (Union Bound)
For events A1, . . . ,An,

P[A1 ∪ . . .∪An] ≤
n∑
i=1

P[Ai].

Proof. We show that this is true by inducting on n. For n = 2, the result follows
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from PIE. Now, assume that it is true for n = k − 1.

P

 k⋃
i=1

Ai

 = P


k−1⋃
i=1

Ai

∪Ak


≤ P

k−1⋃
i=1

Ai

+P[Ak]

≤
k∑

i=1

P[Ai],

by our inductive hypothesis.

Lemma 7.22 (Markov’s Inequality)
Consider a nonnegative random variable X with finite expectation E[X].

Then,

P[X ≥ k ·E[X]] ≤ 1
k
.

This is the same as saying

P[X ≥ k] ≤ E[X]
k

.

As stated, this bound is usually not very good. The proof follows directly from

the law of total expectation.

Lemma 7.23 (Chebyshev’s inequality)
Consider a random variable X with finite expectation E[X] and variance σ2.

Then for any k > 0,

P(|X −E[X]| ≥ kσ ) ≤ 1
k2 .

Proof. This is a direct application of Markov’s Inequality to the random variable

(X −E[X])2.

The next bounds are very popular in Computer Science.
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Lemma 7.24 (Generic Chernoff Bounds)
Consider a random variable X and any k ∈ R, t ∈ R≥0. Then,

P[X ≥ k] ≤ E[etX]
etk

.

Proof. This is a direct application of Markov’s Inequality to the random variable

etX .

Generally speaking, Chernoff bounds are stronger than bounds using Cheby-

shev, which are stronger than bounds using Markov.

Example 7.25
Let X ∼ B(n,1/2). Compute upper bounds on P[X > 3n/4].

Using Markov, P[X > 3n/4] = 2/3, which is really weak. Using Chebyshev, P[X >

3n/4] = 4/n, which is weak, but decays. Noting that E[etX] =
∑n

i=0
(n
i

)
· 2−neti =

(1 + et)n · 2−n, the generic Chernoff bound gives us:

P[X > 3n/4] ≤ exp
(
n log

(
1 + et

2

)
− 3nt

4

)
.

This holds for any t ∈ R≥0 (hence is the “generic” bound), so we may choose a

specific t to make the bound as tight as possible. Differentiating, the expression on

the RHS is minimized when t = log3, giving us

P[X > 3n/4] ≤
(16

27

)n/4
.

This is the tightest upper bound by far, since it decays exponentially.
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