
6.790 Notes
Lecturers: Pulkit Agrawal, Stephen Bates, Tommi Jaakkola, Shen Shen

Andrew Liu

Fall 2023

My notes for 6.790, “Grad ML”. The instructors for this course were Shen Shen

(https://shenshen.mit.edu/), Pulkit Agrawal (https://people.csail.mit.edu/

pulkitag/), Stephen Bates (https://stephenbates19.github.io/), and Tommi

Jaakkola (https://people.csail.mit.edu/tommi/). These notes are pretty sparse,

I mainly focused on things that I found very interesting!

Last updated on Monday 18th March, 2024.

1

https://shenshen.mit.edu/
https://people.csail.mit.edu/pulkitag/
https://people.csail.mit.edu/pulkitag/
https://stephenbates19.github.io/
https://people.csail.mit.edu/tommi/

Contents
1 September 19, 2023 3

1.1 ERM Definition . 3

1.2 Linear Models . 3

1.3 Bias/Variance for Linear Models . 4

2 October 26, 2023 7

2.1 Gaussian Mixture Models . 7

2.2 ELBO lower bound . 8

3 October 27, 2023 10

3.1 K-Means Clustering . 10

3.2 PCA Intuition . 10

3.3 PCA with Encoder/Decoder framework 11

3.4 Probabilistic PCA . 13

3.5 Gaussian Mixture Model Intuition . 13

3.6 Arbitrarily Bad Local Maxima in GMMs 13

4 October 31, 2023 16

4.1 Variational Autoencoders . 16

5 November 3, 2023 17

5.1 Forward Diffusion . 17

5.2 Going Backwards . 19

5.3 Theoretical Loss . 21

5.4 Training Loss . 22

5.5 Turning diffusion models into classifiers 23

2

Andrew Liu September 19, 2023

1 September 19, 2023

1.1 ERM Definition
As a reminder, empirical risk is the average loss over a dataset:

R̂(β) =
1
n

∑
L(Yi , fβ(Xi)),

where β ∈ Θ paramaterizes our hypothesis class fβ : Rd → R. For linear models,

squared loss is common. A standard approach is Empirical Risk Minimization

(ERM):

argmin
β∈Θ

R̂(β) = argmin
β∈Θ

∑
(Yi − fβ(Xi))

2,

possibly with a regularizer of some sort.

1.2 Linear Models
In linear models, our hypothesis class fβ : Rp→ R, and β ∈ Rp+1, where

fβ(x) = β0 + β1x1 + . . .+ βpxp.

Recall that X ∈ Rn×p is a data matrix with n p-dimensional data points Xi ∈ Rp; the

ith row of X is XT
i . Our set of labels is Y ∈ Rn. Our ERM solution should satisfy

β̂ = argmin
β∈Θ

∑
(Yi − fβ(Xi))

2 = argmin
β∈Θ

∥Y −Xβ∥2.

Theorem 1.1
There is a fixed ERM solution for linear models:

β̂ = (XTX)−1XT Y ,

assuming that XTX is invertible.

Proof. Set ∇R̂(β) = 0.

3

Andrew Liu September 19, 2023

With ridge regression,

β̂λ = argmin
β∈Θ

n∑
i=1

(Yi − fβ(Xi))
2 +λ∥β∥2,

which has unique solution

β̂λ = (XTX+λI)−1XT Y .

1.3 Bias/Variance for Linear Models
How good is this estimator? Let β∗ be the true data generator, i.e.,

β∗ = argmin
β∈Θ

E[(Yi −XT
i β)2],

and Y = Xβ∗ + ε, with ε ∼ (0,σ2I). Then we have

β̂ = (XTX)−1XT Y

= (XTX)−1XT (Xβ∗ + ε)

= β∗ + (XTX)−1XT ε,

so E[β̂] = β∗, so this is an unbiased estimator. The covariance is

Cov[β̂] = E[((XTX)−1XT ε)2]

= σ2I(XTX)−1((XTX)−1XT)T

= σ2I(XTX)−1XTX(XTX)−1

= σ2I(XTX)−1.

It turns out we cannot do better than this:

Theorem 1.2 (Gauss-Markov)
Any other linear unbiased estimator has worse covariance.

We can do a similar analysis for the regularized problem, where

β̂λ = (XTX+λI)−1XT Y = (XTX+λI)−1XT (Xβ∗ + ε)

4

Andrew Liu September 19, 2023

where ε is again Gaussian with variance σ2. Then,

E[β̂λ] = (XTX+λI)−1XTXβ∗,

so the bias is

E[β̂λ]− β∗ = (XTX+λI)−1XTXβ∗ − β∗.

Using SVD, X = UDV T for some orthogonal U , V , and D diagonal with eigenvalues

on the diagonal. We have XTX = VDTDV T and

E[β̂λ]− β∗ = ((VDTDV T +λI)−1VDTDV T − I)β∗

= (V (DTD +λI)−1DTDV T − I)β∗

= V ((DTD +λI)−1DTD − I)V T β∗.

The dimensionality of the middle term is n×n and completely diagonal, where the

jth element is
d2
j

d2
j +λ

− 1 = − λ

d2
j +λ

,

thus

E[β̂λ]− β∗ =
n∑

j=1

−λ(vj · β∗)
d2
j +λ

vj ,

where · is dot product. For variance,

β̂λ = E[β̂λ] + (XTX+λI)−1XT ε,

so

Cov[β̂] = E[((XTX+λI)−1XT ε)2]

= σ2((VDTDV T +λI)−1VDTUT)2

= σ2(V (DTD +λI)−1DTUT)2

= σ2V (DTD +λI)−1DTUT (V (DTD +λI)−1DTUT)T

= σ2V (DTD +λI)−2DTDV T .

5

Andrew Liu September 19, 2023

Since V is orthogonal,

Var[β̂] = Tr(Cov β̂) = σ2
n∑

j=1

d2
j

(d2
j +λ)2

.

Example 1.3
A sufficiently small constant of regularization produces smaller average er-

ror.

Consider data y(i) = (β∗)T x(i) + ε(i), where ε(i) i.i.d. Gaussian with variance σ2.

We know that the best ridge estimator is given by

β̂λ = (XTX +λI)−1XT Y = (XTX +λI)−1XT (Xβ∗ + ε),

and define f (λ) = E[∥β̂λ − β∗∥2] to be the average error of the best ridge estimator

and β∗. Then, we can employ bias-variance decomposition:

f (λ) = E[∥β̂λ − β∗∥2]

= E[∥((XTX +λI)−1XTXβ∗ − β∗) + ((XTX +λI)−1XT ε)∥2]

= ∥(XTX +λI)−1XTXβ∗ − β∗∥2 +E[∥(XTX +λI)−1XT ε∥2],

which is bias2 plus variance. We can show that smaller constants of regularization

produce smaller average error by showing that f ′(λ) < 0. For the variance term, we

already showed that

Var[β̂] = σ2
∑ d2

j

(d2
j +λ)2

,

so the derivative is

−2σ2
∑ d2

j

(d2
j +λ)3

< 0

when λ = 0. We previously showed that

E[β̂λ]− β∗ = V ((DTD +λI)−1DTD − I)V T β∗,

6

Andrew Liu October 26, 2023

so

∥E[β̂λ]− β∗∥2 = ∥(β∗)TV ((DTD +λI)−1DTD − I)2V T β∗∥2

=
∑ λ2

(d2
j +λ)2

· (vj · β∗)2.

The derivative at λ = 0 is 0, thus f ′(0) < 0.

2 October 26, 2023

2.1 Gaussian Mixture Models
Each component or “cluster” is a Gaussian. A k component GMM in Rd has pa-

rameters

θ = {p1, . . . ,pk ,µ1, . . . ,µk ,σ
2
1 , . . . ,σ

2
k },

where x ∈ Rd (data), µj ∈ Rd , and σ2
j ∈ R

+. We want to maximize

logP (x|θ) = log

 k∑
z=1

P (z|θ) · P (x|z,θ)

 ,
where P (z|θ) = pz is our prior mixing proportion, and

P (x|z,θ) =
1

(2πσ2
z)d/2

exp
(
− 1

2σ2
z
∥x −µz∥2

)

7

Andrew Liu October 26, 2023

is Gaussian. We can maximize the log likelihood with gradient ascent, where the

gradient is given by:

∇θ logP (x|θ) = ∇θ log

 k∑
z=1

P (z|θ)P (x|z,θ)


=

1∑k
z=1 P (z|θ)P (x|z,θ)

∇θ
k∑

z=1

P (z|θ)P (x|z,θ)

=
k∑

z=1

P (z|θ)P (x|z,θ)
P (x|θ)

∇θ log(P (z|θ)P (x|z,θ))

=
k∑

z=1

P (z|x,θ)∇θ log(P (z|θ)P (x|z,θ))

=
k∑

z=1

P (z|x,θ)∇θ
(
logpz −

1

2σ2
z
∥x −µz∥2 −

d
2

log(2πσ2
z)

)
Now we can perform our gradient ascent as an EM algorithm on the posterior

probabilities Q(z|x) = P (z|x,θ):

• E-step: assign data points x according to Q(z|x).

• M-step: update the model based on the generated data,

θ← θ + η
k∑

z=1

Q(z|x)∇θ log(P (z|θ)P (x|z,θ)) .

2.2 ELBO lower bound
The above works, but we can converge faster by using the ELBO lower bound:

logP (x|θ) ≥
k∑

z=1

Q(z|x) log(P (z|θ)P (x|z,θ)) ,

8

Andrew Liu October 26, 2023

which holds for all Q,θ. Proof that this works:

k∑
z=1

Q(z|x) log(P (z|θ)P (x|z,θ)) ≤max
z

log(P (z|θ)P (x|z,θ))

= log

 k∑
z=1

P (z|θ)P (x|z,θ)


= logP (x|θ).

The idea here is that instead of trying to optimize P (x|θ), we can directly optimize

the ELBO lower bound to make larger steps during each iteration of our algorithm.

We can make this bound tight by adding an entropy term so that ELBO is the same

as the true log likelihood if and only if Q is equal to the true posterior:

logP (x|θ) ≥
k∑

z=1

Q(z|x) log(P (z|θ)P (x|z,θ)) +H(Qz|x),

where

H(Qz|x) = −
k∑

z=1

Q(z|x) logQ(z|x).

We can show that this works as follows:∑
z

Q(z|x) log(P (x|θ)P (x|z,θ)) +
∑
z

Q(z|x) log
1

Q(z|x)

=
∑
z

Q(z|x) log
(
P (z|θ)P (x|z,θ)

Q(z|x)

)
=

∑
z

Q(z|x) log
(
P (x|θ)

P (z|θ)P (x|z,θ)
P (x|θ)Q(z|x)

)
= logP (x|θ) +

∑
z

Q(z|x) log
(
P (z|θ)P (x|z,θ)
P (x|θ)Q(z|x)

)
= logP (x|θ)−

∑
z

Q(z|x) log
(
Q(z|x)
P (z|x,θ)

)
= logP (x|θ)−KL(Qz|x|Pz|x,θ).

The KL-divergence of Qz|x,Pz|x,θ is guaranteed to be non-zero and equal to zero if

and only if Qz|x = Pz|x,θ, so this works.

9

Andrew Liu October 27, 2023

Finally, the ELBO lower bound is a function of both Q and θ, so we can modify

the original EM algorithm to take turns maximizing this lower bound by fixing one

or the other:

• E-step: fix θ and compute Q̂(z|x) that maximizes ELBO

• M-step: fix Q̂ and update θ to maximize ELBO (e.g. with gradient ascent)

3 October 27, 2023

3.1 K-Means Clustering
Place k centroids at random c1, . . . , ck . Then, repeat until convergence:

1. For each xi , locate the nearest centroid cj = argmink
j=1D(xi , ci) for some dis-

tance metric D.

2. For each cluster cj , update the position cj =
∑

xi∈cj xi/n.

Using D = ∥ · ∥22, the objective function being minimized here is

C =
K∑
j=1

∑
xi∈cj

∥xi − cj∥22

There are other ways to choose the centroids. For example, the k-mediods algo-

rithm places the center of each cluster at

xm = argmin
x∈{x1,...,xn}

n∑
i=1

∥xi − x∥2.

This is better for outliers.

3.2 PCA Intuition
Say we have some data about football players and their different attributes: speed,

scoring, height, weight. If we were to plot this data on a graph with each axis

representing an attribute, we know that these axes would not all be orthogonal; for

example, height and weight are strongly correlated. The idea of PCA is to try to

decouple the data space into orthogonal vectors; then, we can more easily select

10

Andrew Liu October 27, 2023

the vectors that “matter”, which allows us to reduce the dimensionality of the data

while keeping its most important aspects.

3.3 PCA with Encoder/Decoder framework
We have x1, . . . ,xn as d-dimensional data in Rd . In PCA, we want to reduce the

dimensionality to m < d, which we can do with an encoder matrix W ∈ Rm×d . We

can also use a decoder matrix U ∈ Rd×m to try to retrieve the original data from its

low-dimensional representation. Our goal is to minimize the distance between the

approximated output x′ = UWx, and its original vector, i.e., we want to find the

“best” encoder/decoder pair

W ∗,U ∗ = argmin
W∈Rm×d ,U∈Rd×m

n∑
i=1

∥xi −UWxi∥22.

First, fix (U,W) and consider the set of all condensed representations R =

{UWx : x ∈ Rd}. This is an m-dimensional linear subspace of Rd , and there ex-

ists some V ∈ Rd×m whose columns form an orthonormal basis of R. So, we may

use V TV = Im (but not the other way around).

For all xi , there exists yi ∈ Rm s.t. V yi = UWxi , so our objective function be-

comes

n∑
i=1

∥xi −V yi∥22 =
n∑
i=1

(xi −V yi)
T (xi −V yi)

=
n∑
i=1

xTi xi + yTi V
TV y − 2yTi (V T xi)

=
n∑
i=1

∥xi∥2 + ∥yi∥2 − 2yTi (V T xi)

since V is orthonormal. Differentiating each summed term, we have

0 =
d

dyi
(∥xi∥2 + ∥yi∥2 − 2yTi (V T xi)) = −2V T xi + 2yi =⇒ yi = V T xi .

This bound is achieved when U = V ,W = V T , so we can now reformulate our

11

Andrew Liu October 27, 2023

objective:

argmin
U∈Rd×m,UTU=Im

∥xi −UUT xi∥2

= argmin
U∈Rd×m,UTU=Im

xTi xi + xTi UUTUUT xi − 2xTi UUT xi

= argmax
U∈Rd×m,UTU=Im

xTi UUT xi

Recall that this expression is not the same as xTi xi , since we can’t say that VV T is

the identity. Finally, summing over all elements,

U ∗ = argmax
U∈Rd×m,UTU=Im

Tr

UT
n∑
i=1

xix
T
i U


Define S =

∑n
i=1 xix

T
i ∈ Rd×d ; we want to maximize Tr(UT SU). S is positive

semi-definite and symmetric, so by the spectral decomposition theorem we have

S = PΛP T , where Λ is diagonal with elements the eigenvalues of S and P is the

corresponding orthonormal eigenbasis. Choose P ,Λ so that Λi,i ≥Λj,j for all i ≤ j,

i.e., order eigenvalues decreasing from left to right.

Now,

Tr(UT SU) = Tr(UT PΛP TU) = Tr
(
(P TU)TΛ(P TU)

)
.

Denoting B = P TU , then

Tr(UT SU) =
m∑
i=1

d∑
j=1

B2
jiΛj,j =

d∑
i=1

Λi,i

m∑
j=1

B2
ij ≤

m∑
i=1

Λi,i .

This bound is tight when U has columns equal to the first m eigenvectors in the

eigenbasis of S, since these leads to B with identity values along the diagonal. More

explicitly,

Bij =
d∑

k=1

P T
ikUkj = Pi · Pj ,

where Pi is the ith eigenvector in S, i.e., the ith column of P . By orthonormality,

this is 0 when i , j and 1 when i = j, so B = Id×m. Finally, plugging this construction

into the above trace formula gives the exact bound, so this works. This shows that

the optimal U ∗,W ∗ is given by the eigenbasis of S, and the corresponding error for

12

Andrew Liu October 27, 2023

this construction is

Tr

 n∑
i=1

xix
T
i +UT

n∑
i=1

xix
T
i U

 =
d∑
i=1

Λi,i −
m∑
i=1

Λi,i =
d∑

i=m+1

Λi,i .

3.4 Probabilistic PCA
We have observation x ∈ Rd generated in latent space by some z ∈ Rm, m < d, via

x = Wz+µ+ ε,

where ε ∼ N (0,σ2I) is noise. µ represents the “mean” latent space representation

of x. If we let z ∼N (0, I), then Wz ∼N (0,WW T), and x ∼N (µ,WW T +σ2I). Thus,

the log likelihood of a full dataset is

NLL(X |µ,W ,σ2) = −nd
2

ln2π − n
2

lndetΣ− 1
2

n∑
i=1

(xn −µ)TΣ−1(xn −µ).

The maximum likelihood PCA satisfies

0 =
∂NLL(X |µ,W ,σ2)

∂µ
=

n∑
i=1

Σ−1(xn −µ) =⇒ µ = x.

3.5 Gaussian Mixture Model Intuition
Gaussian mixture models are an extension of K-means clustering. In these mod-

els, the model is parameters by some M components, each of which generates a

distribution of points according to some model, e.g., multivariate normal. The

likelihood of the model can then be evaluated according to some priors placed on

how likely each point is to be in each of the M components, and then a max likeli-

hood can be solved for using techniques like gradient ascent. We will show in the

next problem that this unfortunately does not always work as we expect it to.

3.6 Arbitrarily Bad Local Maxima in GMMs
(This problem was sourced from Chi Jin, et. al. 2016).

Consider a GMM with M = 3 on the number line and true centers generated by

µ∗1 = −R, µ∗2 = R, and µ∗3 = γR, where R > 0 and γ ≫ 1, and all with variance 1. The

13

Andrew Liu October 27, 2023

idea here is for µ∗1,µ
∗
2 to be close to the origin and µ∗3 to be very far away.

Assuming uniform prior on each of the three clusters, the likelihood of a model

µ = (µ1,µ2,µ3) on n observations is given by

Ln(µ) =
1
n

n∑
i=1

log

1
3

3∑
j=1

1
√

2π
e−(xi−µj)2/2

 .
With infinite data, we can take the loss as an expected value over all possible

data:

L(µ) = Ex

log

 3∑
i=1

e−(x−µi)2/2

− log(3
√

2π)

 .
=

∑
V ∈{A,B,C}

1
3
EV

log

 3∑
i=1

e−(V−µi)2/2


− log(3

√
2π),

where the expected value is decomposed (by the law of total expectation) based

on the assumption of uniform priors between the three clusters. A, B, and C are

random variables that follow the true generating distribution µ∗, since this is what

we should observe with infinite data.

Example 3.1
Consider the set of points D = {(µ1,µ2,µ3) ∈ R3|µ1 ≤ γR/3,µ2 ≥ 2γR/3,µ3 ≥
2γR/3}. In the limit as γ →∞, compute:

• the loss on the three borders of this region, i.e., when µ1 = γR/3, when

µ2 = 2γR/3, or when µ3 = 2γR/3.

• the loss on the model µ̃ = (0,γR,γR).

Starting with µ̃, first expand the entire definition:

L(µ̃) =
1
3
EA

[
log

(
e−(A−0)2/2 + e−(A−γR)2/2 + e−(A−γR)2/2

)]
+

1
3
EB

[
log

(
e−(B−0)2/2 + e−(B−γR)2/2 + e−(B−γR)2/2

)]
+

1
3
EC

[
log

(
e−(C−0)2/2 + e−(C−γR)2/2 + e−(C−γR)2/2

)]
− log(3

√
2π).

14

Andrew Liu October 27, 2023

Taking the limit,

lim
γ→∞

L(µ̃) =
1
3
EA

[
log(e−A

2/2)
]
+

1
3
EB

[
log(e−B

2/2)
]
+

1
3
EC

[
log(2e−(C−γR)2/2)

]
− log(3

√
2π).

Doing a bit more algebra,

E[A2] = Var[A] +E[A]2 = 1 +R2

E[B2] = Var[B] +E[B]2 = 1 +R2

E[(C −γR)2] = E[C2 − 2CγR+γ2R2] = 1,

so

lim
γ→∞

L(µ̃) = −
2R2 + 3− 2log2

6
− log(3

√
2π).

Repeating the same algebra for the borders, it can be shown that the loss is

strictly less on the borders than it is for µ̃. This is significant because it shows that

there is a local maxima in D.

Example 3.2
Show that this local maximum can be arbitrarily bad compared to the global

maximum, i.e., that the log likelihood can be arbitrarily worse in the limit

R→∞.

Repeating the same calculation as above, we can compute the global loss by

plugging in µ∗ = (−R,R,γR):

lim
R→∞

L(µ∗) =
1
3

(
−(A+R)2/2− (B−R)2/2− (C −γR)2/2

)
− log(3

√
2π),

where

E[(A+R)2] = E[(B−R)2] = E[(C −γR)2] = 1,

so

lim
R→∞

L(µ∗) = −1
2
− log(3

√
2π).

We can show that limR→∞L(µ′) = −∞ as follows. L(µ′) is bounded above by the

µ2 term, since A and C grow arbitrarily far from the center R; but, the contribution

of loss from the µ2 term is −∞ since all three of µ′1,µ
′
2,µ
′
3 grow arbitrarily far from

15

Andrew Liu October 31, 2023

center. Therefore, in the limit, global loss is constant, while our local maximum can

achieve arbitrarily bad loss. Since loss is continuous in R, this shows that we can

grow the gap between our local and global maxima arbitrarily large by increasing

R. The significance of this result is that gradient ascent does not always work as

expected!

4 October 31, 2023

4.1 Variational Autoencoders
Another generative model is the variational autoencoder. The high level goal of

VAEs is to compress a complex data distribution into a smaller latent space, and

then be able to regenerate the distribution from latent space.

In particular, the inference model, or encoder, or recognition model attempts

to learn qφ(z|x) ≈ Pθ(z|x), where z is some data in the latent space, and x ∼ Pθ is the

true data distribution.

This encoding process is very similar to the encoding we use for GMMs. In par-

ticular, we can learn qφ by minimizing log likelihood logPθ(x), which we can do

with the ELBO lower bound (we quickly derive another way to write this expres-

sion):

Lθ,φ(x) =
∑
z

qφ(z|x) log(Pθ(x)Pθ(x|z)) +
∑
z

qφ(z|x) log
1

qφ(z|x)

=
∑
z

qφ(z|x) log
(
Pθ(z)P (x|z)
qφ(z|x)

)
= Eqφ(z|x)

(
log

Pθ(x,z)
qφ(z|x)

)
.

We showed previously that logPθ(x) = Lθ,φ(x)+KL(qφ(z|x), Pθ(z|x)), where KL(qφ(z|x), Pθ(z|x)) ≥
0 with equality iff our model correctly predicts qφ = Pθ. In other words,

logPθ(x) ≥
∫

qφ(z|x) log
(
Pθ(x,z)
qφ(z|x)

)
dz+H(qφ(z|x))

with equality iff we predict correctly, so we can try optimizing the ELBO lower

bound instead of the log likelihood directly.

It is common to reparamaterize the latent space z ∼ qφ(z|x) =N (z;µ(x,φ), (σ (x;φ)2)),

where µ(x;φ) and σ (x;φ) completely specifies the posterior distribution. These can

16

Andrew Liu November 3, 2023

be learned with a neural net, e.g.,

(µ, logσ) = EncoderNeuralNetφ(x)

qφ(z|x) =N (z;µ, (σ)).

During learning, it is common to represent qφ as a function of some exter-

nally chosen noise; for example, we might sample ε ∼ N (0,1), and then take

zφ = µ(x;φ) + σ (x;φ) ⊙ ε. This way, we can backprop from the final prediction

through the latent space and back to φ. If we sample directly from the latent

space, we can’t backprop (we can compute the gradient when ε is an input to the

function, but we can’t when we have to sample ε as part of the function).

The generative model, or decoder, remaps data from the latent space into the

complex data space. This part of the model attempts to learn Pθ(x|z), which is also

commonly reparamaterized as a collection of gaussiansN (z;gθ(z),σ2I). Parameters

g,σ can again be learned with a neural net, DecoderNeuralNetθ(z). Lastly, training

can be done with EM, similar to the EM from Gaussian mixtures:

• decoder:

θ = θ + η∇θ logPθ(x|zφ).

• encoder:

φ = φ+ η∇φ
(
logPθ(x|zφ)−KL(qφ(z|x)|Pθ(z))

)
.

where gradient ascent updates are made according to the ELBO criterion.

5 November 3, 2023

5.1 Forward Diffusion
In diffusion, we fix a forward process that adds Gaussian noise to an image. We

then use a reverse de-noising process to reverse this process and generate images

from noise.

More specifically, we start with some data x0 sampled from distribution q(x).

Then, we define a forward diffusion process

q(xt |xt−1) =N (xt;
√

1− βtxt−1,βtI),

17

Andrew Liu November 3, 2023

where the probability of the entire process up to time T is

q(x1:T |x0) =
T∏
t=1

q(xt |xt−1).

At each time step, we’re injecting a bit of noise into the image. By the end of the

forwards process, xT is isotropic (pure noise). Usually, β1 < β2 < . . . < βT with some

scheduling process (linear, cosine) to ensure that this is true. Using nice properties

of Gaussians, we can sample any timestep directly instead of having to simulate

the entire process each time.

Claim 5.1
Let αt = 1− βt and αt =

∏t
i=1αi , and ε ∼N (0, I). Then,

xt =
√
αtx0 +

√
1−αtε.

Proof. We can do this with induction. This clearly holds for t = 1. Now, for arbi-

trary t > 1,

xt =
√
αtxt−1 +

√
1−αtεt

=
√
αt

√
αt−1x0 +

√
αt −αtαt−1ε+

√
1−αtεt

=
√
αtx0 +

√
1−αtε,

where the last equality comes from linearity of variance for independent gaussian

noise. This completes the induction.

This result shows that we can think of the image at timestep t as a linear com-

bination of pure noise and the original image, where the proportion assigned to

pure noise approaches 1 as t → T . The graph below visualizes linear vs cosine

scheduling:

18

Andrew Liu November 3, 2023

1

T

where the y-axis is αt (i.e., the proportion of the original image that we are

preserving), x-axis is time, and the green and red schedules are linear and cosine

schedules, respectively. The cosine schedule is more gradual and has been shown

to generally produce better results for smaller image sizes, e.g., 32x32 pixels.

5.2 Going Backwards
The more difficult step in diffusion models is figuring out how to generate data in

the complex data space (i.e., an image) from pure noise. When βt is small, q(xt−1|xt)
is essentially a gaussian, so we can attempt to learn pθ(xt−1|xt) =N (xt−1;µθ(xt , t),Σθ(xt , t)).

Unfortunately, q(xt−1|xt) is intractable, but q(xt−1|xt ,x0) can be calculated by

flipping everything to the forwards direction with Bayes. Per the normal distribu-

tion for multivariate distributions, we want something that looks like this:

q(xt−1|xt ,x0) =
1√

(2π)k detΣθ(xt , t)
exp

(
−
∥xt−1 −µθ(xt , t)∥2

2detΣθ(xt , t)

)
,

where we implicitly assume Σθ(xt , t) = β̃tI for some derived value of β̃t (our noise is

independent). Recall that q(xt |xt−1) =N (xt;
√
αtxt−1,βtI) and q(xt |x0) ∼N (xt;

√
αtx0,

√
1−αtI),

so we have

q(xt−1|xt ,x0) = q(xt |xt−1,x0)
q(xt−1|x0)
q(xt |x0)

=
1√

(2π)kβkt

√
(2π)k(1−αt)k√

(2π)k(1−αt−1)k
exp

(
−
∥xt−1 −µθ(xt , t)∥2)

2detΣθ(xt , t)

)
.

19

Andrew Liu November 3, 2023

Therefore,

β̃ =
1−αt−1

1−αt
βt .

To compute the mean, we continue expanding inside of the exp:

q(xt−1|xt ,x0) = q(xt |xt−1,x0)
q(xt−1|x0)
q(xt |x0)

=
1√

(2πβ̃)k
exp

(
−1

2

(
(xt −

√
αtxt−1)2

βt
+

(xt−1 −
√
αt−1x0)2

1−αt−1
− (xt −

√
αtx0)2

(1−αt)

))

=
1√

(2πβ̃)k
exp

(
−1

2

(
x2
t−1

(
αt

βt
+

1
1−αt−1

)

−xt−1

(
2
√
αt

βt
xt +

2
√
αt−1

1−αt−1
x0

)
+
x2
t

βt
+

αt−1x
2
0

1−αt−1
− (xt −

√
αtx0)2

1−αt

))
,

where matrix multiplications are handwaved. We can verify

αt

βt
+

1
1−αt−1

=
αt −αt + 1−αt

βt(1−αt−1)
=

1
β̃t
,

so we have

q(xt−1|xt ,x0) =
1√

(2πβ̃k)
exp

(
−
∥xt−1 −µθ(xt , t)∥2

2β̃kt

)
.

(the exponents don’t quite match up because we are handwaving away all the ma-

trix logic). Comparing coefficients gives

µθ(xt , t) =
(√

αt

βt
xt +

√
αt−1

1−αt−1
x0

)
β̃

=
√
αt(1−αt−1)

1−αt
xt +
√
αt−1βt
1−αt

x0

=
√
αt(1−αt−1)

1−αt
xt +
√
αt−1βt
1−αt

1
√
αt

(xt −
√

1−αtεt)

=
1
√
αt

αt −αt

1−αt
xt +

1
√
αt

1−αt

1−αt
(xt −

√
1−αtεt)

=
1
√
αt

(
xt −

1−αt√
1−αt

εt

)
.

20

Andrew Liu November 3, 2023

5.3 Theoretical Loss
We can now explicitly compute q(xt−1|xt ,x0) ∼N (xt−1;µθ(xt , t),Σθ(xt , t)), so we can

compute the backwards diffusion step at any timestep conditioned on knowing x0.

To find the best possible x0, we can optimize log likelihood use the same ELBO

lower bound used to optimize VAEs and gaussian mixtures:

logpθ(x0) ≥ Eq

(
pθ(x0,x1:T)
q(x1:T |x0)

)
= Eq

(
pθ(x0:T)
q(x1:T |x0)

)
.

To turn this into a minimization problem, we optimize LVLB = − logpθ(x0), where

VLB stands for variational lower bound. With a bit of algebra, we can simplify this

expression:

LVLB = Eq

(
log

q(x1:T |x0)
pθ(x0:T)

)
= Eq

(
log

∏T
t=1 q(xt |xt−1)

pθ(xT)
∏T

t=1pθ(xt−1|xt)

)

= Eq

− logpθ(xT) +

 T∑
t=1

log
q(xt |xt−1)
pθ(xt−1|xt)

+ log
q(x1|x0)
pθ(x0|x1)


= Eq

− logpθ(xT) +

 T∑
t=2

log
q(xt−1|xt ,x0)q(xt |x0)
pθ(xt−1|xt)q(xt−1|x0)

+ log
q(x1|x0)
pθ(x0|x1)


= Eq

− logpθ(xT) +

 T∑
t=2

log
q(xt−1|xt ,x0)
pθ(xt−1|xt)

+ log
q(xT |x0)
q(x1|x0)

+ log
q(x1|x0)
pθ(x0|x1)


= Eq

log
q(xT |x0)
pθ(xT)

+

 T∑
t=2

log
q(xt−1|xt ,x0)
pθ(xt−1|xt)

− logpθ(x0|x1)


= DKL(q(xT |x0)∥pθ(xT)) +

T∑
t=2

DKL(q(xt−1|xt ,x0)∥pθ(xt−1|xt))− logpθ(x0|x1)

= LT +
T∑
t=2

Lt−1 +L0.

21

Andrew Liu November 3, 2023

5.4 Training Loss
In practice, LT can be ignored, since xT is always pure gaussian noise. There are

some things we can do for L0 that are not that important here. Therefore, we care

about optimizing Lt for t = 1 to T − 1.

The KL divergence for multivariate normal distributions is given by

DKL(N 0 ||N 1) =
1
2

(
Tr(Σ−1

1 Σ0) +
1

detΣ1
∥µ1 −µ0∥2 − k + ln

detΣ1

detΣ0

)
.

To minimize Lt, we only care about terms that depend on θ. Our expression for

posterior variance

β̃t =
1−αt−1

1−αt
· βt

does not depend on θ, since all of our α,β are predetermined, so the only terms we

care about in the expression for KL divergence are the terms with µ0,µ1, i.e.,

1
detΣ1

∥µ1 −µ0∥2,

in the notation of the above expression. We know q(xt−1|xt ,x0) =N (xt−1; µ̃(xt ,x0), β̃tI),

and we want our model pθ(xt−1|xt) to learnN (xt−1;µθ(xt , t),Σθ(xt , t)), where µθ(xt , t) ≈
µ̃(xt ,x0) and Σθ(xt , t) ≈ β̃tI . Since we are ultimately trying to minimize log loss

across all possible x0, we minimize the EV across x0. Also, like the reparamateri-

zation trick for VAEs, we don’t want to sample directly from each gaussian when

computing values like µ̃t(xt ,x0); instead, we first sample εt ∼N (0,1), and let µ̃ take

it as a parameter, so that we can backprop through the function properly. In sum,

our goal is to now minimize EV across both x0 and εt, which gives us

Lt −C = Ex0,εt

(
1

2∥Σθ(xt , t)∥22
∥µ̃t(xt ,x0)−µθ(xt , t)∥2

)
with C independent of θ. Plugging in known values, this simplifies:

Lt −C = Ex0,εt

 1

2∥Σθ(xt , t)∥22

∥∥∥∥∥∥ 1
√
αt

(
xt −

1−αt√
1−αt

εt

)
− 1
√
αt

(
xt −

1−αt√
1−αt

εθ(xt , t)
)∥∥∥∥∥∥2

= Ex0,εt

(
(1−αt)2

2αt(1−αt)∥Σθ(xt , t)∥2
∥εt − εθ(

√
αtx0 +

√
1−αtεt , t)∥2

)
.

22

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence

Andrew Liu November 3, 2023

In practice, it has been shown that total loss L given by

L−C = Et,x0,εt (∥εt − εθ(
√
αtx0 +

√
1−αtεt , t)∥2)

gives better results (note that we have added t to the expected value, so this repre-

sents a total loss objective over all timesteps). This is really convenient for train-

ing, because this is just the expected mean squared error between the actual noise

added to an image at time t, εt, and the error predicted by the backwards diffusion

process. We can therefully usually train by randomly selecting a batch of images,

timesteps, and noise to add to each image, and then incurring loss equal to the

MSE of the noise predicted by the unet and the actual noise that was added to each

image.

5.5 Turning diffusion models into classifiers
In addition to normal diffusion models that learn pθ(x0:T), there are also condi-

tional diffusion models that learn pθ(x0:T |ci). The only difference between class

conditional models and normal models is that the neural network learned during

the backwards diffusion process takes the class as an additional parameter. It turns

out that we can also use these models as classifiers.

pθ(ci |x) =
p(ci)pθ(x|ci)∑
j p(cj)pθ(x|cj)

.

The learned UNet produces Lθ(x|ci) ≤ logpθ(x|ci). In principle, our learned ELBO

should be the same as the actual log likelihood, so we may sayLθ(x|ci) ≈ logpθ(x|ci).
Assuming uniform priors on all of the classes, we thus have

pθ(ci |x) =
exp(−Et,ε∥ε − εθ(xt , ci)∥2)∑
j exp(−Et,ε∥ε − εθ(xt , cj)∥2)

.

ELBO values can be approximated via Monte Carlo by sampling (t,ε) pairs, using

the trained UNet to predict εθ(xi , ci), and computing the expected mean squared

loss of the errors over all samples. This is an overkill but interesting way to classify

things that has shown decent results.

23

	September 19, 2023
	ERM Definition
	Linear Models
	Bias/Variance for Linear Models

	October 26, 2023
	Gaussian Mixture Models
	ELBO lower bound

	October 27, 2023
	K-Means Clustering
	PCA Intuition
	PCA with Encoder/Decoder framework
	Probabilistic PCA
	Gaussian Mixture Model Intuition
	Arbitrarily Bad Local Maxima in GMMs

	October 31, 2023
	Variational Autoencoders

	November 3, 2023
	Forward Diffusion
	Going Backwards
	Theoretical Loss
	Training Loss
	Turning diffusion models into classifiers

