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1 February 7, 2023

1.1 Administration
Problem sets are hard. Start early, don’t wait until the last minute (in fact, there

will be no office hours on the day that problem sets are due, in order to discourage

this practice). The worst two problem sets are dropped. You are allowed to turn in

problem sets up to 2 days late, at most 3 times, with no penalty. Collaboration on

problem sets is highly encouraged.

Prof. Madry calls this class the “Art and Craft” of Algorithms. In this class, the

content covered will generally fall into three different themes:

• Techniques

• Models of Computation

• Intractability

1.2 Intro to Complexity
We will learn more about this throughout the semester. Algorithms that can be

solved in O(nc) for some constant c are said to be efficient.

Definition 1.1 (P)
P is the set of all decision problems that can be solved in O(nc).

For example, the Eulerian cycle problem: given a graph, is it possible to find a

cycle which traverses every edge of the graph exactly once?

Definition 1.2 (NP)
NP is the set of all decision problems that can be verified in O(nc).

NP does not stand for “not polynomial”; instead, it stands for non-deterministic

polynomial time.

As an example, the Hamiltonian cycle problem is NP-complete: given a graph,

is it possible to find a cycle which traverses every vertex of the graph exactly once?

NP-completeness means that it is both in NP (since it is easy to verify that a valid
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cycle is in fact valid), and it is NP-hard (approximately, it is as hard as all other

problems in NP). We will work with these ideas more formally in later lectures.

1.3 Scheduling (greedy)
We have one resource, and n requests for this resource R = {r1, . . . , rn}. Each request

corresponds to some start and finish time, i.e., ri = [ai ,bi]. For each request r, define

its set of incompatible requests as

Inc(r) = {r ′ |r ∩ r ′ , ∅}

Given R, compute the maximal set of compatible requests.

A typical greedy approach is structured like this:

• Use a simple (myopic) rule to pick ri

• Include ri in our solution, and remove everything in the set Inc(ri).

• Repeat until there are no more requests remaining.

It remains to figure out what simple rule we should use. Let’s consider a few

candidates.

• Remove the request with the shortest length: this does not work. For a

counter example, consider R = {[1,3], [3,5], [2.5,3.5]}. The shortest interval

can still kill multiple longer intervals that do not overlap.

• Remove the request with the earliest start time: this does not work. For a

counter example, consider R = {[1,5], [2,3], [4,5]}. The earliest request can

kill everything else.

• Remove the request with the smallest number of incompatible requests: this

does not work. For a counter example, consider

R = {[1,2], [2,3], [3,4], [4,5], [1.5,2.5], [1.5,2.5], [2.5,3.5], [3.5,4.5], [3.5,4.5]}.

• Remove the request with the earliest end time: this works.

6
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Lemma 1.3
The greedy algorithm while always removing the request with earliest end

time produces an optimal solution.

Proof. Assume otherwise. Let S be our greedy scheduling, and S ′ be an optimal

scheduling. Let s1, . . . be the greedy schedule, in order, and s′1, . . . be the optimal

schedule, in order. Let si = [ai ,bi] be the first task at which the two schedules

differ (if the two schedules are the same, we are done). We must have bi < b′i by

our greedy algorithm. Therefore, we could replace s′i with si and not decrease the

number of scheduled tasks in the optimal solution. This implies |S | ≤ |S ′ |, which

means that the greedy solution is also optimal.

1.4 Scheduling (DP)
Now, imagine that we have the same problem, but tasks are weighted. Our new

goal is to schedule tasks so that the weight is maximal.

We can use dynamic programming. Sort the tasks by start time, so that a1 ≤
a2 ≤ . . . ≤ an. Let Opt(R) be weight of the best schedule given R. The recurrence is

given by

Opt(R) = max{Opt(R− r),wr +Opt(R− Inc(r))},

with base case Opt(R) = 0 when R = ∅. Computing Inc(r) naively at each step gives

a runtime of O(n2). This can be sped up using binary search to give a runtime of

O(n logn).

2 February 9, 2023
Today we’ll be going over the divide and conquer technique, which are problems

that can be split into subproblems in such a way that

T (n) = aT
(m
b

)
+ (anything else)

7



Andrew Liu February 9, 2023

2.1 Median Finding
Given a set S of n numbers, define the rank of x as the number of elements in S ≤ x.

Define the median of S as the element of rank ⌊(n+ 1)/2⌋.

Idea: solve this more general problem first.

Example 2.1
Given a set of n distinct numbers S, and index i ∈ [n], find x ∈ S such that

rank(x) = i.

One idea: sort S, then return the element at position i. The runtime of this

algorithm is O(n logn).

We can do better, due to an algorithm by Blum, Floyd, Pratt, Rivest, Tarjan in

1973:

• Pick an element x ∈ S

• Compute L = {y ∈ S : y < x}, and G = {y ∈ S : y > x}. From this, we know that

rank(x) = |L|+ 1.

• If rank(x) = i, then we’re done. If rank(x) > i, find the element of rank i in L.

Otherwise, find the element of rank i − |L| − 1 in G.

The runtime of step 1 is O(n) (generous). The runtime of step 2 is O(n). The

runtime of step 3 is T (max{|L|, |G|}). Therefore,

T (n) = T (max{|L|, |G|}) +O(n).

Note that max{|L|, |G|} ≤ n−1, so our worst case performance is T (n) = O(n2). How-

ever, this is only possible if we were to choose x that is optimally bad at each step

of the recursion. If we instead pick x “cleverly”, we can guarantee a better runtime.

Definition 2.2
x is c-balanced for some c < 1 if and only if

max{rank(x),n− rank(x)} ≤ cn.
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If we choose c-balanced x at each step of the way, our new recursion becomes

T (n) = T (c ·n) +O(n),

which gives

T (n) = O(n) +O(c ·n) + . . . ∈O
( n

1− c

)
∈O(n),

which is what we wanted. Here is one way to run the algorithm in a way that selects

x “cleverly”:

• Divide S into n/5 groups of size 5.

• Sort each group and find the median of each one.

• Compute the median of these n/5 medians, call x.

• Continue as before.

Lemma 2.3
x is 3/4-bounded.

Proof. There are at least n/10 group medians ≤ x, which implies that there are at

least 3n/10 elements ≤ x. Therefore,

|L| ≥ 3n
10
≥ n

4
,

which implies that n− rank(x) ≤ 3n/4. Similarly, there are at least 3n/10 elements

≥ x, so rank(x) ≤ 3n/4.

Lemma 2.4
Given that x is 3/4-bounded, our algorithm is linear.

Proof. This is equivalent to showing that there exists c1 such that T (n) ≤ c1 · n. We

will prove this using induction. Our recursion is

T (n) = T
(3

4
n
)

+ T
(n

5

)
+O(n).

Let c2 be the constant such that the O(n) term contributes less than or equal to

c2 · n work at each step of the recursion. Now, assume that our claim is true for all

9
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1, . . . ,n− 1. Then,

T (n) ≤ c1 ·n
5

+
3c1n

4
+ c2n = c1n+

(
c2 −

c1

20

)
n < c1n,

since we can set c1 to be as large as we want.

2.2 Integer multiplication
Given two n-bit integers a,b, compute a · b. (n can be as large as we want, so multi-

plication in the usual sense is not constant time).

One approach is to do “old-school” multiplication, i.e., set up the multiplica-

tion table and manually compute everything. The complexity of this solution is

O(n2).

A more efficient solution is to use divide and conquer. Let

a = 2n/2 · x+ y,

b = 2n/2 ·w+ z,

where x,y,z,w are all n/2-bit integers. Then,

a · b = 2n · xw+ yz+ 2n/2 · (xz+ yw),

so our recursion is

T (n) = 4T
(n

2

)
+Θ(n) = O(n2),

by Master theorem. Unfortunately, this is just as bad as the normal multiplication

algorithm, but this bound can be improved by reducing the number of multiplica-

tions required.

Lemma 2.5 (Anatoli Karatsuba, 1962)

XZ +YW = (X +Y )(Z +W )−XW −YZ.

So, to complete the recursion, it suffices to only compute three products: (x +
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y)(z+w), xw, and yz. Then, our recursion becomes

T (n) = 3T
(n

2

)
+Θ(n) ∈Θ(nlog2 3) = Θ(n1.58).

3 February 14, 2023
Today we’ll be going over randomized algorithms. Properties of randomized algo-

rithms:

• Decisions are in some way based on random numbers r1, . . . , rk ∈R {1, . . . ,R}

• Given some input x, the same algorithm may run different sequences of op-

erations, have different running times, and produce different outputs.

Two examples of general classes of randomized algorithms:

• Monte Carlo algorithms are always polynomial time. The probability that

these algorithms return a correct answer is “high”, but not necessarily 1.

• Las Vegas algorithms have polynomial run time in expectation. On the other

hand, it guarantees a correct answer.

3.1 Verifying matrix products
Given matrices A,B,C, verify whether A · B = C. For now, assume we are working

modulo 2.

Introducing Frievald’s Algorithm:

• Pick a random binary v = (v1, . . . , vk), such that P[vi = 1] = 1/2

• Compute v̂ = A(Bv) and
∼
v = Cv

• If v̂ =
∼
v, return YES. Otherwise, return NO.
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The runtime of this algorithm is O(n2), which is faster than normal matrix multi-

plication. This is an example of a Monte Carlo algorithm, since it is always time-

efficient, but does not guarantee a correct answer. The main hope is that the ran-

domization makes the probability that an incorrect answer is produced low.

Lemma 3.1
If A ·B , C, then P[ABv , Cv] ≥ 1/2.

Proof. Let D = C − AB , 0. Consider any vector r such that Dr = 0, i.e., if our

algorithm chooses r, then it would return an incorrect result. Since there exists

some Dij = 1, we have Dei , 0, so D(r + ei) , 0. Note that r + ei is the same vector

as r with the ith bit flipped, so there is an injective mapping between vectors that

return the incorrect result and vectors that return the correct result, which proves

the lemma.

3.2 Quick Select
Recall the median finding (rank finding) algorithm we discussed last time:

• Pick an element x ∈ S “cleverly”

• Compute L = {y ∈ S : y < x}, and G = {y ∈ S : y > x}. From this, we know that

rank(x) = |L|+ 1.

• If rank(x) = i, then we’re done. If rank(x) > i, find the element of rank i in L.

Otherwise, find the element of rank i − |L| − 1 in G.

The main idea was that we could pick x that was always 3/4-balanced, to guarantee

constant reduction for each subtask and consequently linear run time. If we were

to remove this step and instead pick x ∈ S randomly, we would still have a correct

algorithm, but the run time would pick up a non-zero probability of not being

linear.

The expected run time becomes:

T (n) = T
(3

4
n
)

+ (E[# iterations] + 1) · cn,

where the expected number of iterations refers to the expected number of iterations

it takes before x is 3/4-balanced (with respect to the most recent subtask for which
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x was 3/4-balanced). Since P[X is 3/4− balanced] ≥ 1/2, E[# iterations] ≤ 2, so our

expected runtime is still linear.

4 February 16, 2023

4.1 Union Find
The goal of this data structure is to maintain a dynamic collection of pairwise dis-

joint sets S = {s1, . . . , sr} with a single arbitrary representative per set, Rep[si]. Our

goal is to be able to support these three methods:

• Make-Set(x): add set {x} to the set of sets, with x as a representative. This is

an initialization method.

• Find-Set(x): if s(x) is the set containing element x, this method returns Rep[s(x)].

• Union(x,y): let s(x) and s(y) be the two sets containing x and y (possibly

equal). This method replaces both sets with s(x)∪s(y) with a single represen-

tative.

Example 4.1
Use doubly-linked lists to implement this data structure.

• Make-Set(x): Runtime: O(1).

• Find-Set(x): Iterate through s(x) until the leader is found. Runtime: O(L) ∈
O(n), where L is the length of s(x).

• Union(x,y): Link together s(x) and s(y). Runtime: O(L) ∈O(n).

Consider the following scenario: we call Make-Set for n elements a1, . . . , an.

Then, we call Union(a1, a2),Union(a1, a3), . . . ,Union(a1, an). Since we are traversing

a list of growing size, the total runtime of these n operations is

Θ(1) + . . .+Θ(n) = Θ(n2).

13
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Example 4.2
Optimization 1.1: create a pointer from each element to the head of the set.

By maintaining these pointers, we can retrieve leaders in constant time.

This changes the runtime of Find-Set(x) to constant time. However, Union(x,y)

remains bad, since we have to replace the “leader” pointers for each element in the

merged list.

Example 4.3
Optimization 1.2: maintain the size of each set. During the Union operation,

only join lists that are shorter to lists that are longer.

Lemma 4.4
Using this optimization, the amortized time of Union is O(logn). In other

words, any sequence of m ≥ n operations that contains k union operations

runs in time O(m+ k logn).

Proof. Focus on a single element u. Each time it is merged with another ele-

ment x, we only update its leader (which comes with cost O(L)) when Length(x) ≥
Length(u), i.e., Length(u) doubles. If we merge u with a smaller element, it comes

with no cost associated with the element u. Since we can only double the length

of the set containing u at most logn times, the total cost of all union operations is

bounded by O(n logn).

Let’s change our abstraction. Instead of thinking of sets as doubly-linked lists,

let’s think of them as trees. For the union operation, update the “leader” pointer

of only the leader of the merged set. For the find operation, traverse upwards until

the leader is found.

Example 4.5
Optimization 2.1: Define the rank of a leader Rep[s(x)] to be its number of

children. Then, only join trees with smaller ranks to trees with larger ranks.

14
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Example 4.6
Optimization 2.2: path compression. During each Find-Set operation, re-

direct the parent pointer of each visited node to the leader.

The idea behind this optimization is to flatten the tree. Each time we call Find-

Set, we take all traversed nodes and reposition them so that they are adjacent to

the leader node.

Algorithm 1: Find-Set

1 if x , x.parent then

2 x.parent = Find-Set(x.parent)

3 return x.parent

Algorithm 2: Union

1 U = Find-Set(U )

2 V = Find-Set(V )

3 if U = V then

4 return

5 if U.rank = V .rank then

6 U.rank = U.rank + 1

7 V .parent = U

8 else if U.rank > V .rank then

9 V .parent = U

10 else

11 U.parent = V

• Claim 1: Optimization 2.1 gives O(logn) Union and Find-Set operations. The

proof for this is the same as it was for the linked-list representation.

• Claim 2: Optimization 2.2 gives O(logn) amortized. We will prove this when

we discuss amortized analysis in a bit. (Example 4.10).

• Claim 3: Both optimizations together produces O(α(n)), which is the inverse

ackermann function. This can essentially be thought of as constant time. For

example, α(1080) ≤ 4. We will not be proving this.
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4.2 Amortized Analysis (Queue using Two Stacks)
A queue can be implemented using two stacks, s1 and s2, in the following way:

• Enqueue(x): push x onto s1

• Dequeue(): If s2 is empty, pop elements in s1 until s1 is empty, then push

them onto s2. Then, pop a single element off of s2.

The Enqueue operation is always constant. The Dequeue operation is not al-

ways constant, e.g., when s1 is full, but is constant amortized. Here are three ways

to show that the amortized cost is constant.

Definition 4.7
Aggregated amortized time analysis is the most straightforward to under-

stand (but often hard to compute in practice). It computes the total cost of n

operations by directly summing the cost of each operation.

Consider the cost of the ith call to Dequeue. Suppose ni is the total number of

calls to Enqueue that were made before the current Dequeue. The total cost is at

most O(ni), since it takes O(ni) to pop everything off of s1, O(ni) to push everything

onto s2, and possibly some extra cost to pop off the element itself. Note that the

total number of enqueues is O(n), so the total cost of all dequeues is O(n1+. . .+nk) ∈
O(n). Therefore, the amortized cost of Dequeue is O(1).

Definition 4.8
The potential amortized time analysis assigns each operation with a new cost

via a potential function. The main insight is that if we can choose a potential

function to “balance out” expensive operations, our newly assigned costs can

all be bounded by our desired amoritzed cost.

For each of the n operations, let their actual costs c1, . . . , cn. Our goal is to com-

pute the amortized cost
∑
ci/n. For each operation, defined its amortized cost to

be

ĉi = ci +Φ(Di)−Φ(Di−1),

where Φ is a potential function mapping each state of the process Di to a real

16
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number. Note that ∑
ĉi =

∑
ci + (Φ(Dn)−Φ(D0)).

Therefore, as long as Φ(Di) ≥ Φ(D0) for all i, we can say that
∑
ĉi ≥

∑
ci , and com-

pute an upper bound on the actual total cost of all operations.

As some general intuition, our goal is to pick a potential function that makes

ĉi as close as possible to the actual amortized cost that we want to prove. For

example, in the queue with two stacks example, we want to show that dequeue is

O(1) amortized, so we want to pick a potential function such that all ĉi are constant

time. We know that the most expensive operations for dequeue are related to the

number of elements in s1, so we are motivated to choose a potential function that

offsets this heavier cost.

Example 4.9
Proof that the Dequeue method runs in O(1) amortized, using the potential

method.

Let Φ(Di) be 2|s1| after the ith operation has completed. For each call to En-

queue, the actual cost is 1 for a simple push operation, and the size of s1 increases

by 1 element, so

ĉi
Enqueue = 1 +∆Φ = 3.

For each call to Dequeue, the actual cost is 2|s1|+ 1, since it costs |s1| to pop every

element in s1, |s1| to push them all back onto s2, and an additional 1 to pop the last

element from s2. Also, the change in potential is −2|s1|. So,

ĉi
Dequeue = 2|s1|+ 1 +∆Φ = 1.

In both cases, ĉi is constant. Moreover, since Φ(D0) = 0, it must be the case that

Φ(Di) ≥ Φ(D0) for all i. Together, this implies that the sum of the actual costs is

O(n), hence we have O(1) amortized as desired.

Example 4.10
Proof that path compression results in O(logn) amortized time for both Find-

Set and Union in the union-find data structure, using the potential method.
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We will show this using the potential function

Φ(Di) =
∑
u∈Di

log(u.size),

where u.size is the number of nodes in the subtree rooted at u. Note that this

sum only iterates over nodes which are included in at least one set (u ∈ Di). In

particular, Φ(D0) = 0, so this is a valid potential function to use, since Φ(Di) ≥ 0 =

Φ(D0) for all i.

First, consider the Find-set operation. If we call the operation on v0, we will

follow a path v0,v1, . . . , vk = Rep[S(v0)], so the actual cost is k. For each vertex in

this path, we redirect its leader pointer to vk . Therefore, for each 1 ≤ i ≤ k − 1, the

updated size of vi is vi .size − vi−1.size, since each node is losing all of the children

of its child when it is redirected. So, our amortized cost is given by

ĉi
Find-set = k +∆Φ = k +

k−1∑
i=1

log
(
vi .size − vi−1.size

vi .size

)

= 1 +
k−1∑
i=1

[
1 + log

(
vi .size − vi−1.size

vi .size

)]
.

When vi .size > 2 · vi−1.size, the summand is non-negative and bounded above by

1+log(1) = 1. Otherwise, the summand is negative. However, along the chain, there

can be at most log(n) doublings, since the total number of nodes is bounded above

by n. Therefore, there are at most log(n) non-negative terms in the summand, each

≤ 1, so ĉi
Find-set ∈O(logn).

Next, consider the Union operation. This operation consists of two find-set

operations, then a constant-time join operation, so the amortized cost is

ĉi
Union = 2ĉi

Find-set + cjoin +∆Φjoin = 2ĉi
Find-set +∆Φjoin.

Since Find-set is O(logn) amortized, it suffices to compute ∆Φjoin:

∆Φjoin = log
(
x.size+ y.size

x.size

)
≤ log

( n
x.size

)
∈O(logn).

So, the amortized cost for Find-set is also O(logn) as desired.
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5 February 23, 2023

5.1 Competitive Analysis and Self-organizing Lists
Think of a self-organizing list as a singly-linked list.

The method Access(x) finds and returns the element with key x. The cost of

Access(x) is RankL(x).

After accessing, we reorder L via transposing adjacent elements. The cost of

reordering is equal to the number of transpositions.

Consider a sequence of operations on elements S = {x1, . . . ,xN }. The cost of

operation i is the sum of its axis cost and reordering cost. Say that the reordering

cost of operation i is ti . Then, the total access cost and total reordering cost for an

arbitrary sequence of N operations is

CA(S) =
N∑
i=1

Rank(xi) +
N∑
i=1

ti .

Definition 5.1
An offline algorithm is an algorithm that knows what operations it needs to

perform in advance. An online algorithm does not.

Say we have L with these keys:

1 −→ 2 −→ 3 −→ 4

Say we design the (online) algorithm so that we always move the previously

accessed element to the front. Then, we can design a sequence of inputs such that

it still costs n per operation: S = {4,3,2,1}. In general, we won’t be able to do better

than this for the online version of the algorithm.

Definition 5.2
Let OPT be an optimal offline algorithm. Let A be an online algorithm. A is

α-competitive if there exists a constant c such that for any access sequence

S,

cA(S) ≤ α · c
OPT

(S) + c.
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In some cases, even the efficiency of the offline algorithm OPT cannot be better

than the online algorithm. For example, when we have L:

1 −→ 2 −→ . . . −→ n,

accessing S = {n,n−1, . . .} is Ω(n2), even for OPT. For example, consider the cost of

the first n/3 operations. For each of these operations, we can choose to transpose

them beforehand to get a lower cost, or access them directly. Both of these options

are Ω(n), so the cost of the first n/3 operations is Ω(n2).

Theorem 5.3
Consider the MTF (move to front) strategy: after accessing an element, move

it to the front. MTF is 4-competitive.

We will prove this theorem using potential function analysis, like we used dur-

ing recitation. Recall:

• We want to define a potential function Φ taking the state of the data structure

to some real number. Let Di be the state of the data structure after update i.

We require Φ(Di) ≥ Φ(D0).

• We define an imaginary (amortized) cost:

ĉi = c(i) +∆Φ ,

where c(i) is the true cost of operation i.

• In sum,
|S |∑
i=1

c(i) ≤
|S |∑
i=1

ĉ(i),

completing our amortized analysis.

Proof. Both MTF and OPT start with the same list L0, and sequence of operations

S = {x1, . . . ,xN }. After Access(xi), MTF has list Li , and OPT has list L∗i . Now, con-

sider the cost of operation i + 1.

• For MTF, the total cost is

RankLi (xi+1) +RankLi (xi+1)− 1 = 2RankLi (xi+1)− 1.
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• For OPT, the total cost is

RankLi (xi+1) + ti+1,

where ti+1 is the number of transpositions that the algorithm performs.

Define our potential function as follows:

Φ(i) = 2 · |{(x,y) : x <Li y,x >L∗i
y}|.

This is a valid potential function, since Φ(i) ≥ 0 = Φ(0) for all i.

Now, after the ith operation concludes, let Ai+1 be the set of all keys before xi+1

in both Li and L∗i ; let Bi+1 be the set of all keys after xi+1 in Li , and before Xi+1 in

L∗i ; let Ci+1 be the set of all keys after xi+1 in L∗i , and before xi+1 in Li ; and let Di+1

be the set of all keys after xi+1 in both Li and L∗i .

Let’s consider ∆Φ . During the operation changing Li to Li+1, xi+1 is moved to

the first element in the list. This creates |Ai+1| new inversions, and removes |Ci+1|
inversions. During the operation changing L∗i to L∗i+1, xi+1 is transposed ti+1 times,

which creates at most ti+1 new inversions. Therefore,

∆Φ ≤ 2(|Ai+1| − |Ci+1|+ ti).

We also know that RankLi (xi+1) = |A|+ |C|+1, and RankLi (xi+1) = |A|+ |B|+1. So, we

may say

ĉMTF
i+1 = 2RankLi (xi+1)− 1 +∆Φ

≤ 2(|Ai+1|+ |Ci+1|+ 1)− 1 + 2(|A| − |C|+ ti+1)

≤ 4(|Ai+1 + 1 + ti+1|),

while

cOPT
i+1 = |Ai+1|+ |Bi+1|+ 1 + ti+1 ≥ |Ai+1|+ 1 + ti+1.

Thus, ∑
i

cMTF
i ≤

∑
i

ĉMTF
i ≤ 4

∑
i

(|Ai |+ 1 + ti) ≤ 4
∑
i

cOPT
i ,

which completes the proof.
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Example 5.4
Here is some motivation for the potential function that we used to prove the

previous theorem. Consider the reordering cost of L into L∗:

• The minimum number of transpositions needed to turn L into L∗ is at

least the number of inversions. If x and y are inverted, there is no trans-

position that can swap x and y besides the transposition that swaps x

and y directly.

• There is a sequence of v transpositions that fixes all v transpositions.

Fix each element in reverse order, and it works.

Since the potential function counts the number of inversions, it approxi-

mately captures how far apart L and L∗ are after a given operation.

6 February 28, 2023
Today we will talk about Hashing. We want to support a dictionary T that stores

(k,v) key value pairs, where all keys k ∈ U for some universe U . Let n be the number

of objects in T , and m = |T |.
We want to support three methods:

• Insert(x): insert x = (x.Key,x.Value) into the dictionary

• Delete(x): delete x = (x.Key,x.Value) from the dictionary

• Search(k): search for the key k, i.e., return x.Value if x.Key = k.

6.1 Direct Addressing
Make m = |U |. Then, we could insert, delete, and search in constant time. Unfortu-

nately, the space complexity here is horrible, since |U | ≫ n most of the time.

6.2 “Solution Zero”
• Use a list (e.g., linked) as the dictionary. In the worst case, Insert and Delete

are O(1), while Search is O(n).
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• Use some sort of tree as the dictionary. In this case, we can achieve O(logm)

for all three methods.

6.3 Hashing
Hashing allows us to shrink U . We start with a hash function

h : U →M = {0, . . . ,m− 1}.

Assuming that we restrict m ∈ O(n), this is highly compressed. Inevitably, there

will exist two keys k,k′ such that h(k) = h(k′), which is called a collision. There are

many different ways to deal with collisions.

Example 6.1
One way to deal with collisions is chaining.

In chaining, for each available space in the dictionary, instead of storing a single

value, store another data structure, like a list (or even another dictionary). So, when

two keys collide, insert them into the same data structure.

The space complexity of this solution is O(m + n). Assuming that hashing is

constant, and inserting into our list is constant, insertion takes O(1). Deletion can

also take O(1). Searching takes O(|L|), where L is the length of the list stored at a

particular key value.

Definition 6.2
Define load factor as α = n/m, which is the ratio of the number of items we

are trying to store in our dictionary, and its total space.

Note E[|L|] = α. In a random oracle process, we make a hash function that

assigns objects to lists at random and independently. It is not possible to design an

efficient random oracle, but we ignore this for now.

Using the random oracle, we intuitively keep the lengths of all of the lists short.

In fact, by the Chernoff bounds, if n = Θ(m), the maximum load of any bin is

O(logm/(loglogm)) with high probability.
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6.4 Universal Hashing

Definition 6.3
A hash family H = {h : U →M} is universal if for all k,k′ ∈ U ,

P[h(k) = h(k′)] ≤ 1
m
.

Note that this probability is taken over all hash functions inH. The motivation

for this definition is that the bound is tight for the random oracle, i.e., P[RO(k) =

RO(k′)] = 1/m.

Consider the expected length of each list in universal hashing. For j , j ′, let

Xj,j ′ = 1(h(kj ) = h(kj ′ )). Assuming that our hash family is universal, E[Xj,j ′ ] ≤ 1/m.

By linearity of expectation, the number of keys colliding with kj has expected value

∑
j,j ′

E[Xj,j ′ ] ≤
n− 1
m

,

so the expected length of the list with kj is 1 + (n− 1)/m < 1 +α.

Example 6.4
Construct a universal hash function.

Let r = logm |U |. Write all keys in base r, i.e., for any key k ∈ U , express it as

some a ∈Mr , a = (a0, a1, . . . , ar−1). Now, define our family of hash functions

ha(k) = ⟨a,k⟩ =
r−1∑
ℓ=0

aℓd
(k)
ℓ (mod m),

where k = (d(k)
0 ,d

(k)
1 , . . . ,d

(k)
r−1).

Theorem 6.5
This hash function is universal.

Proof. For any two k,k′ ∈ U , we want to show

Pa∈RMr [⟨a,k⟩ = ⟨a,k′⟩] ≤ 1
m
.
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Since k , k′, let ℓ∗ be an index such that d(k)
ℓ∗ , d

(k′)
ℓ∗ . Now, ⟨a,k⟩ = ⟨a,k′⟩ if and only

if

r−1∑
ℓ=0

aℓd
(k)
ℓ (mod m) ≡

r−1∑
ℓ=0

aℓd
(k′)
ℓ (mod m)

⇐⇒
r−1∑
ℓ=0

aℓ

(
d

(k)
ℓ − d

(k′)
ℓ

)
≡ 0 (mod m)

⇐⇒ aℓ∗
(
d

(k)
ℓ∗ − d

(k′)
ℓ∗

)
≡ −

∑
ℓ,ℓ∗

aℓ

(
d

(k)
ℓ − d

(k′)
ℓ

)
(mod m)

⇐⇒ aℓ∗ = −
(
d

(k)
ℓ∗ − d

(k′)
ℓ∗

)−1 ∑
ℓ,ℓ∗

aℓ

(
d

(k)
ℓ − d

(k′)
ℓ

)
(mod m),

Assuming that we are working with a “nice” m, i.e., some prime number, the prob-

ability that this is true is exactly 1/m, since everything is chosen randomly.

7 March 2, 2023
Review from last time: we want to create methods Insert, Delete, Search. The

keys k ∈ U , the number of objects is n, the size of the dictionary T is m, and the

load factor α = n/m.

7.1 Open Addressing
Open addressing is another way to address collisions. In open addressing, we

guarantee a different hash for every different element. In this case, we require

n ≤m =⇒ α ≤ 1.

For each k ∈ U , define a probing sequence σ (k) = {i(k)
0 , i

(k)
1 , . . . , i

(k)
m−1} that we look

through to assign keys to different elements. The probing sequence is a permu-

tation of m. Now, model this probing sequence as an output to a hash function

h : U × {0, . . . ,m− 1} → {0, . . . ,m− 1}:

h(k,p) = i
(k)
p ,

where p is called the probe number.

For each method, we still start with a normal hash function h(k) = i
(k)
0 . To insert,
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keep incrementing p until T [h(k,p)] until it is empty or marked deleted, and insert

the element. To delete, keep incrementing p until T [h(x.Key,p)] = x.Val, and mark

it deleted.

• Linear probing:

h(k,p) = (h(k) + c · p) (mod m).

Clustering is a problem with linear probing. For elements that hash to keys

that are closer together, the searches start to overlap heavily.

• Double hashing:

h(k,p) = (h1(k) + p · h2(k)) (mod m),

for two hash functions h1,h2. Double hashing gets us closest to the uniform

hashing assumption.

Definition 7.1
The uniform hashing assumption says that for all k ∈ U , the probe sequence

σ (k) is a independent and uniformly random permutation.

Let X be the number of steps it takes before a hash is successful. Under the

uniform hashing assumption, P[X ≥ k] = αk−1, since each new part of the sequence

is filled with probability α. Therefore, the expected runtime for each hash is

O(1 +α + . . .) ∈O(1/(1−α)).

7.2 Perfect Hashing

Definition 7.2
A static dictionary is a dictionary that only supports the Search method. All

inserts are performed beforehand during a preprocessing phase.

A perfect hashing scheme is a hashing scheme that ensures no collisions, which

guarantees O(1) search time. One way to achieve this is to use solution zero (i.e.,

chaining with a list), but to implement the “list” as another dictionary with hash-

ing. So, there are two levels of hashing:
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• h1(k) is a slot in T

• If h1(k) = i, the final location for k is h2,i(k).

Theorem 7.3
Let H = {h : U → M} universal. If we pick h ∈R H and hash n keys with

m ≥ n2, then the probability of a collision is < 1/2.

Proof. Proof by union bound. The probability P satisfies

P ≤
(
n
2

)
1
n2 <

1
2
.

In principle, we could use this fact to preprocess hash functions until there are

no collisions; in expectation, this would only require two random choices. The

problem with doing this is the requirement that m ≥ n2, leading to quadratic space

complexity. Using chaining with a second hash function allows us to circumvent

this.

Let h1 map Ni keys to the ith mini dictionary. Our goal is to achieve∑
N2

i = O(n),

so that our space is still linear. To compute the probability that this is true, we can

compute its expected value, and then apply Markov’s inequality. By linearity of

expectation,

E
[∑

N2
i

]
=

∑
(k1,k2)∈U 2

P(h1(k1) = h2(k2))

= n+
∑
k1,k2

P(h1(k1) = h2(k2))

≤ n+
n(n− 1)

m
< 2n,

by the property of universal hashing, assuming that m ≥ n. This implies that,

P[
∑
N2

i > 4n] < 1/2 by Markov’s inequality. So, in expectation, we only need to try

to pick h1 twice before it is “good enough”.
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8.1 Spanning Trees

Definition 8.1
A spanning tree of G = (V ,E) is a subgraph (V ,ET ) which is a connected tree.

Spanning trees are not necessarily unique! An easy way to find a spanning tree

is to use DFS, which has linear runtime.

Observation about any spanning tree T of G: for every non-tree edge (x,y),

there exists a unique path P(x,y) from x to y in T . P(x,y)∪{(x,y)} forms a cycle, which

is called the fundamental cycle of (x,y).

Lemma 8.2 (Cut and Swap Property of Spanning Trees)
For any G = (V ,E) and spanning tree T , non-tree edge (x,y), and tree edge

e ∈ P(x,y), the graph T ′ = T ∪ {(x,y)} − {e} is also a spanning tree.

Proof. Consider the unique path P with endpoints u,v in T . If e < P , then P is in

T ′, so P also connects u,v in T ′.

Otherwise, e ∈ P . Let C(x,y) = P(x,y) ∪ {(x,y)}. WLOG, the distance from u to x is

smaller than the distance from u to y. Then P(u,x)∪ (C(x,y) − e)∪ P(y,v) is a path from

u to v in T ′. So, we are done.

Note that this operation preserves the number of edges, which makes sense,

since trees always have |V | − 1 edges.

8.2 Minimal Spanning Trees (MST)

Definition 8.3
Given graph G = (V ,E) and weight function w : E→ R, a minimal spanning

tree of G is a spanning tree of minimum weight.

Like the normal spanning tree, MSTs are not necessarily unique, due to the

possibility of different edges having the same weights. But, given that all edges

have different edges, it turns out that there is a unique MST.
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A general greedy approach to finding a minimum spanning tree might look as

follows. First, initialize a set of edges A = ∅. While A is not a spanning tree, find a

“safe” edge to add to A.

When A = ∅, the min weight edge e∗ = (a,b) is safe. Let T be a minimal span-

ning tree. If e∗ ∈ T , then we are done. Otherwise, we can use the cut and swap

property with another edge on the path P(a,b) to achieve another spanning tree T ′

with w(T ′) ≤ w(T ) =⇒ w(T ′) = w(T ), and T ′ is also an MST.

Definition 8.4
A cut of G = (V ,E) is a partition of V into (S,V −S). An edge (x,y) ∈ E crosses

cut (S,V − S) if x ∈ S and y ∈ V − S. A cut (S,V − S) respects a set of edges

A ⊆ E if no edge of A crosses the cut. An edge (x,y) ∈ E is a light edge for

cut (S,V − S) if it crosses the cut and has minimum weight among all edges

crossing the cut.

Theorem 8.5
Let A ⊆ E, where A is a proper subset of the edges of some MST. Let (S,V −S)

be a cut that respects A. Let e be a light edge for the cut. Then e is safe for A.

Proof. We will prove this using the cut and swap property. Let T be some MST

containing A.

Say e = (a,b) < T . Let P(a,b) be path in T from a to b. Note that T must cross the

cut, since a and b are in different parts of the cut. Let e′ be an edge in P that crosses

the cut. By the cut and swap property, we can replace e′ with e to obtain another

spanning tree T ′. Since w(e′) ≤ w(e), w(T ′) ≤ w(T ) =⇒ w(T ′) = w(T ), so T ′ is also a

minimal spanning tree.

Now, we have a general approach for picking safe edges:

Algorithm 3: Meta-Greedy MST

1 A = ∅
2 while A is not a spanning tree do

3 Pick cut (S,V − S) that respects A

4 Let e be a light edge for the cut

5 A = A∪ {e}

6 return A

29



Andrew Liu March 7, 2023

Note that the loop should run exactly |V | −1 times, since this is the final size of

A. There are many ways to pick these cuts efficiently:

• Prim’s Algorithm: A is a tree of isolated vertices. Pick the cut (V (TA),V −
V (TA)). The implementation for Prim’s is very similar to Dijkstra, since we

are essentially just adding the min-weight edge adjacent to A, which we can

keep track using a priority queue.

• Kruskal’s Algorithm: A is a forest of trees. Pick e to get the min weight edge

connecting 2 different trees. This can be implemented using the union find

data structure.

8.3 Implementation details Kruskal’s
In Kruskal’s we construct the MST by building up a forest of smaller trees and

connecting them until they eventually become a single unified tree. First, we sort

the edges by decreasing weight. Then, we add edges greedily as long as they cross

cut, i.e., connect two different trees. Correctness comes from the previous facts that

we proved about light edges (we always add light weight edges due to the sorting).

Algorithm 4: Kruskal’s MST

1 A = ∅
2 For all v ∈ V , Make-Set(v)

3 Sort E in non-decreasing order

4 for e = (u,v) ∈ E do

5 if Find(u) ,Find(v) then

6 A = A∪ (u,v)

7 Union(u,v)

8 return A

The runtime of this algorithm is dominated by the sorting, O(|E| log |E|). The

cost of the loop is O(|E|α(|V |)), since the number of union and finds is bounded by

the number of edges.
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8.4 Implementation details Prim’s
For Prim’s, we construct our MST by maintaining a single smaller tree, and at each

step adding a new edge until the tree eventually becomes an MST. The idea is that

we should always add the lowest weight edge adjacent to our current tree, since

this is a light edge (and hence correctness comes from the ideas we proved earlier).

There are a few different ways to implement Prim’s. The naive way is to, for

each step, iterate through all edges and choose the lowest weight available edge

adjacent to our current tree.

Algorithm 5: Prim’s MST, slow

1 A = ∅
2 Pick starting vertex s ∈ V , set V (A) = {a}
3 while A is not a spanning tree do

4 Initialize a min-weight edge e∗

5 for e = (u,v) ∈ E do

6 if w(e) < w(e∗) and u ∈ V (A), v < V (A) then

7 e∗ = e

8 Add e∗ to A

9 return A

The runtime is O(|V ||E|), since the loop “while A is not a spanning tree” runs

O(|V |) times (we add exactly |V | − 1 edges until A becomes a spanning tree). An

easy way to speed this up is to iterate over vertices instead of edges, by keeping

track of the distances to the tree:
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Algorithm 6: Prim’s MST, dense graphs

1 A = ∅
2 Init D, set of distances from the tree

3 Pick starting vertex s ∈ V , set V (A) = {a}
4 while A is not a spanning tree do

5 Initialize a min-weight edge e∗ for v ∈ V do

6 if D[v].dist < w(e∗) then

7 e∗ = (D[v].parent,v)

8 Add e∗ to A

9 for v adjacent to the newly added vertex v∗ in e∗ do

10 if w((v,v∗)) < D[v].dist then

11 D[v].dist = w(v)

12 D[v].parent = v∗

13 return A

The runtime is O(|V |2), since we make two linear traversals through the ver-

tices for each added edge. Note that the runtime of Kruskal’s is O(|E| log |E|). This

version of Prim’s is more desirable than Kruskal’s for dense graphs, i.e., when

|E| ∈O(|V |2). For example, see here (USACO).

The last, most efficient but hardest to implement, version of Prim’s is to imple-

ment it with a Min-Prio queue, like how we implement Dijkstras. This is similar in

idea to the first version (Algorithm 5). Instead of iterating all edges, we keep track

of the closest ones with a Min-Prio queue:
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Algorithm 7: Prim’s MST, PQ

1 A = ∅
2 Pick starting vertex s ∈ V
3 Initialize Min-Prio Queue PQ

4 for v ∈ V do

5 v.key =∞

6 s.key = 0

7 while A is not a spanning tree do

8 v = PQ.top()

9 Add v to V (A)

10 If not the first iteration, add (v,v.parent) to E(A)

11 for u adjacent to v do

12 if w((u,v)) < u.key then

13 u.key = w((u,v))

14 u.parent = u

15 return A

The outer loop runs O(|V |) times. Extracting the minimum with a normal heap

takes O(log |V |), while updating the queue in place can be done in O(1) using fi-

bonacci heap. The inner loop performs O(|E|) of these updates (across the entire

algorithm), so the final runtime is O(|E|+ |V | log |V |).
Without fibonacci heap, updates take O(log |V |), giving a final runtime of

O(|E| log |V |+|V | log |V |) ∈O(|E| log |V |). This is the the same performance as Kruskal’s

algorithm.

9 March 9, 2023

9.1 Max Flow Problem
The setup for this problem:

• directed graph G = (V ,E)

• a source vertex s ∈ V

• a sink vertex t ∈ V
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• a max capacity for each edge, represented by a function c : E → R≥0. we

additionally say that c(u,v) = 0 for all (u,v) < E.

The question we want to answer is approximately as follows. Each directed

edge represents a one-way road from one place to another. The capacity of each

edge represents the number of lanes that this road has. We want to find the maxi-

mum rate of traffic that can flow from s to t.

Definition 9.1
Gross Flow.

Define the “gross flow” g : E→ R≥0 be such that g(u,v) denotes the amount of

flow on the edge (u,v). A valid flow satisfies

• Feasability:

0 ≤ g(u,v) ≤ c(u,v)∀(u,v) ∈ E

• Flow conservation: ∑
u

(g(u,v)− g(v,u)) = 0∀v , s, t.

This quantity represents the net flow (in and out) from the vertex v.

Definition 9.2
Net flow.

This is the notation that we will primarily be using in this class. Define the “net

flow” f : V ×V → R (note that this can be negative) be such that f (u,v) denotes the

flow from u to v. A valid flow satisfies

• Feasability:

f (u,v) ≤ c(u,v)∀u,v ∈ V

• Flow conservation: ∑
u

f (u,v) = 0∀v , s, t

As before, this represents the net flow (in and out) from the vertex v.
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• Flow symmetry:

f (u,v) = −f (v,u)∀v,u

Definition 9.3
The value of a flow f is given by

|f | =
∑
v

f (s,v).

Now, we can formally define the maximum flow problem.

Definition 9.4 (Max Flow Problem)
Given a network G = (V ,E,s, t, c), we want to find f ∗ such that |f ∗| is maximal.

Observe that any flow can be decomposed into a collection of s − t paths and

cycles. We can think of these as the elementary “building blocks” of flows.

Lemma 9.5 (Flow decomposition lemma)
Let suppf (G) be the subgraph of G of edges (u,v) with f (u,v) > 0. Then,

suppf (G) can be decomposed into a collection of flow paths and cycles.

include proof?

Lemma 9.6
|f ∗| > 0 if and only if there exists an s − t path P in G+, where G+ is the

subgraph of edges with positive capacities.

Proof. An s − t path in G+ implies positive flow from s to t, hence |f ∗| = 0. The

other direction follows from the flow decomposition lemma; all cycles contributes

0 flow, so positive net flow implies that there exists a positive path from s to t.

Let

Ŝ = {v ∈ V : ∃s − v path in G+}.

Note that s ∈ Ŝ. If |f ∗| = 0, meaning that there does not exist an s − t path in G+,

then t < Ŝ, i.e., t ∈ V − Ŝ. This implies that Ŝ is an s− t cut (Ŝ,V − Ŝ) which separates

s and t.
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Definition 9.7
The capacity of a cut (S,V − S) is

c(S) =
∑
u∈S

∑
v∈V−S

c(u,v).

In other words, c(S) is the total capacity of all edges that leaves S.

Given that c(S) = 0, there is no positive flow from s to t, meaning that (S,V −S)

is an s − t cut. In particular, Ŝ from above satisfies c(Ŝ) = 0.

Definition 9.8 (Minimum s − t cut problem)
Given G = (V ,E,s, t, c), find an s − t cut of minimum capacity.

Let

f (S) = f (S,S −V ) =
∑
u∈S

∑
v∈V−S

f (u,v).

In other words, f (S) represents the net flow across the cut. Note that it must be

true that

f (S) ≤ c(S),

by feasibility.

Claim 9.9
f (S) = f (S ′) for any S,S ′ which are s − t cuts.

Proof. Using the flow decomposition lemma, f is a collection of flow cycles and s−t
flow paths. The main idea is that each flow cycle contributes 0 to f (S) and f (S ′),

while each s − t path contributes the same flow to both f (S) and f (S ′).

By this claim, |f | = f ({s}) = f (S) for any s − t cut (S,V − S). Thus:

Lemma 9.10 (Weak Duality Principle)
The max flow is smaller than the minimum s − t cut.

|f ∗| = f ∗(S∗) ≤ c(S∗).

So, the max-flow algorithm:
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• Start with |f | = 0

• As long as there exists an s−t path in G+, keep increasing |f | by the flow along

this path.

Definition 9.11 (Residual Network)
A residual network Gf = (V ,Ef , s, t, cf ) of a flow f in the network G with

residual capacities cf (u,v) = c(u,v)− f (u,v) and set of edges

Ef = {(u,v) : cf (u,v) > 0.}

We need the extra edge definition in the cases when f completely saturates

edges, i.e., they can no longer be used in the residual network Gf .

Given that f is a flow in G and f ′ is a flow in Gf , f + f ′ is a flow in G. So, in

order to improve a flow f in G, it suffices to find a non-zero flow in Gf . If it is

impossible to do so, this implies that there exists an s − t cut Ŝ with cf (Ŝ) = 0.

Proposition 9.12
For any s − t cut S, cf (S) = c(S)− f (S).

Proof.

cf (S) =
∑
u∈S

∑
v∈V−S

cf (u,v) =
∑
u∈S

∑
v∈V−S

c(u,v)− f (u,v) = c(S)− f (S).

Thus, if cf (Ŝ) = 0, we have c(Ŝ) = |f |. But, by weak duality,

c(Ŝ) = |f | ≤ |f ∗| ≤ c(S∗) ≤ c(Ŝ),

implying that f = f ∗, i.e., f is a max flow, and Ŝ is the min s − t cut.

Theorem 9.13 (Max Flow - Min Cut Theorem)

|f ∗| = c(S∗).

This is also known as the strong duality of flows and s − t cuts.
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10.1 Ford-Fulkerson
First, recap on some definitions from last time. A net flow f : V × V → R is a

function satisfying:

• feasability: f (u,v) ≤ c(u,v)∀u,v

• flow conservation:
∑

u f (u,v) = 0∀v , s, t

• skew symmetry: f (u,v) = −f (v,u)

The residual network Gf = (V ,Ef , s, t, cf ) of a flow f in graph G has a different

set of residual capacities cf (u,v) = c(u,v)− f (u,v), and edges (u,v) ∈ Ef whenever

cf (u,v) > 0, so that saturated edges are disguarded.

Definition 10.1
An augmenting path in Gf is a directed s− t path in Gf . For any augmenting

path P , define the bottleneck capacity cf (P ) = min(u,v)∈P (cf (u,v)).

We saw last time that pushing cf (P ) along any augmenting path increases |f | by

cf (P ); and, if no such path exists, then we have found a max flow. So now, the Ford

Fulkerson algorithm:

• start with f ≡ 0

• while an augmenting path P exists in Gf , augment f by cf (P )

• return f

The correctness of this algorithm comes from this important theorem:

Theorem 10.2 (Max Flow-Min Cut Theorem)
The following statements are equivalent:

(1) |f | = c(S) for some s − t cut S

(2) f is a max flow

(3) f admits no augmenting path, i.e., there is no s − t path in Gf
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(1) ⇐⇒ (2) implies that, if S∗ is the minimal s − t cut, then |f ∗| = c(S∗). This

is called the strong duality of flows and s − t cuts. This implies the weak duality

principle, i.e., that the max flow is smaller than the minimum s − t cut.

(3) =⇒ (2) implies that Ford-Fulkerson always works, since the algorithm

keeps removing augmenting paths until no more exist.

Runtime:

• If capacities are integers bounded above by C, cf (P ) ≥ 1 always. This implies

that the number of augmentations X satisfies:

X ≤ |f ∗| ≤ c({s}) ≤ n ·C.

With some dfs strategy, it takes O(m) time to find an augmented path and

perform the necessary augmentations. Therefore, an upper bound on the

runtime is O(mnC), which is pseudo-polynomial.

• If capacities are rational, the number of augmentations is bounded above by

something least common multiples of the capacity of each edge adjacent to s.

This still gives finite, pseudo-polynomial runtime.

• If capacities are real, it is possible to construct a graph that gives infinite

runtime, since there is no longer the guarantee that some linear combination

of edge weights can be an integer.

10.2 Optimizing Ford-Fulkerson (weakly polynomial)
Instead of picking any augmenting path, we can try choosing the augmenting path

at each step “smartly”.

Definition 10.3
The maximum bottleneck path is the augmenting path P that maximizes the

bottleneck capacity cf (P ).

Claim 10.4
It is possible to choose the maximum bottleneck path in O(m logn).
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Proof. Sort all edges by their residual capacity in O(m logm) ∈ O(m logn). Then,

perform a binary search on the bottleneck capacity through this list of edges; for

each iteration, run a DFS to check whether or not it is possible to find an augment-

ing path with a given bottleneck capacity. Since each DFS is O(m), and we run

O(logm) ∈O(logn) iterations, the total runtime is O(m logn).

Claim 10.5
In any graph Gf , there exists an s − t path P in Gf with

cf (P ) = min
e∈P

c(e) ≥ |f ∗|/m,

where |f ∗| is the value of the max flow in Gf (not the original graph G).

Proof. By the flow decomposition lemma, the graph with positive flow edges can

be decomposed into paths and cycles. If we choose these paths and cycles such that

each completely saturates at least 1 edge, the number of such paths/cycles ≤m.

Thus, we have ≤ m paths from s to t that partition the flow in Gf . Since the

max flow is |f ∗|, this implies that at least one of these paths has flow |f ∗|/m, as

desired.

The improved runtime is now as follows:

• The implication of the first claim is that we can perform each augmentation

in O(m logn).

• The implication of the second claim is that (with some proof) the total num-

ber of augmentations is bounded above by O(m lognC). Each time we aug-

ment a path, we multiply the amount of flow we have remaining by a factor

of (1−1/m). Since |f ∗| ≤ nC, this reduces to bounding nC(1−1/m)x < 1, where

x is the number of augmentations. Now,

nC
(
1− 1

m

)x
< 1 =⇒ − log(nC) < x log

(
1− 1

m

)
.

Since x log(1−1/m) > x · (−1/m), this holds for some x < m log(nC), as desired.

Thus, the total runtime of this version of the algorithm is O(m2 logn lognC),

which is weakly polynomial.
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10.3 Edmonds-Karp (polynomial Ford Fulkerson)
To achieve polynomial runtime, choose augmenting paths in another different way.

In particular, choose them with BFS, so that the augmented path is always the

shortest in terms of path length. It can be shown that the runtime in this case is

O(nm2).

11 March 21, 2023

11.1 Linear Programming (LP)

Example 11.1
Motivating example.

We are a politician with a limited budget. We can campaign on four issues:

building roads (1), gun control (2), forming subsidies (3), and gasoline tax (4). We

can campaign each of these issues to urban, suburban, or rural populations, at

some cost for for each separate issue campaigned.

For each additional dollar we spend campaigning a topic, this is the number of

voters we gain from each region:

u s r

roads -2 5 3

guns 8 2 -5

subsidies 0 0 10

gas 10 0 -2

Say yi is the amount of money that we spend on each topic. Say also that our

political strategy insists that we get at least 50,000 urban votes, 100,000 suburban

votes, and 25,000 rural votes.

Now, our problem is to find

min(y1 + y2 + y3 + y4),
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subject to the constraints

−2y1 + 8y2 + 0y3 + 10y4 ≥ 50,000,

5y1 + 2y2 + 0y3 + 0y4 ≥ 100,000,

3y1 − 5y2 + 10y3 − 2y4 ≥ 25,000,

y1, y2, y3, y4 ≥ 0.

The optimal solution (y∗1, y
∗
2, y
∗
3, y
∗
4) = (2050000/111,425000/111,0,625000/111),

giving an optimal cost 3100000/111.

Definition 11.2
Linear Programming problems seek to maximize a linear objective subject

to a linear constraint.

• the variable vector is given by

x⃗ = [x1, . . . ,xn]T ∈ Rn.

• the objective function is given by

c1x1 + . . .+ cnxn = c⃗ · x⃗,

where the vector of constants

c⃗ = [c1, . . . , cn]T ∈ Rn.

technically, the objective function is given by c⃗T · x⃗. for clarity, we won’t write

these transposes.

• the constraints are given by∑
i∈[n]

Aijxj ≤ bj ∀j ∈ [m].

more compactly, we will use the notation

A · x⃗ ≤ b⃗,
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with A ∈ Rm×n, where m is the number of constraints.

Definition 11.3
Standard form LP.

The “standard form” of linear programming problems is to maximize c⃗ · x⃗, sub-

ject to Ax⃗ ≤ b⃗ and x⃗ ≥ 0. As before, the “≤” and “≥” is row-wise, i.e., x⃗ ≥ 0 ⇐⇒
xi ≥ 0∀i ∈ [n].

Claim 11.4
Any LP can be reduced to standard form LP.

Proof. If the objective is going the wrong direction, min(c⃗ · x⃗) ⇐⇒ max(−c⃗ · x⃗).

Similar logic can be applied to any inequality that faces the wrong direction. If

we insist that any constraint requires equality, we can turn the constraint into two

separate constraints with both ≥ and ≤. For any xi ∈ R, we can write xi = x+
i − x

−
i ,

where x+
i ,x
−
i ≥ 0.

Example 11.5
Maximize x1 + x2 subject to x1 + 2x2 ≤ 4 and x1,x2 ≥ 0.

c⃗ = (1,1). One way to view this problem is to find the point in the triangular

region bounded by the constraints that is “as far as possible” in the direction of c⃗.

We can reason that the optimal point must lie at one of the vertices as follows.

The optimal solution must lie on a border, because for any point strictly inside of

the triangle, we can move further in the direction of c⃗ by moving to a boundary.

Once we are on the boundary, by monotonicity, moving along at least one of the

directions (right/left) on the boundary cannot decrease the value of the objective

function. So, it suffices to check the vertices of the triangle, giving is (4,0) as the

optimal solution.

11.2 LP Algorithms

Example 11.6
Simplex (Dantzig 1947).
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Like the previous example, walk from vertex to vertex along the feasible poly-

tope in the direction of c⃗. This is practical to implement, but has worst case expo-

nential run time.

Example 11.7
Ellipsoid (Khachiyan 1979).

Maintains an ellipsoid that is guaranteed to contain the optimal solution. At

each step, the ellipsoid is shrinked. This achieves worst case polynomial runtime,

but is impractical to implement.

Example 11.8
Interior-point method (Karmarkar 1984).

Moves the current solution strategically so that it travels close to to the optimal

solution. Instead of moving only on the boundaries (like the Simplex method),

this moves the current point through the polytope itself. This is polynomial and

practical to implement.

Warning !△
If we force x1, . . . ,xn ∈ Z, the question becomes NP-hard. Even though it

seems related, it is much more difficult to algorithmically solve this variant

of the problem.

11.3 LP Duality
Let’s return to the motivating example. It turns out that summing 25/222 · (1) +

46/222 · (2) + 14/222 · (3) gives

y1 + y2 +
140
222

y3 + y4 ≥
31000000

111
.

This immediately proves optimality, since the left hand side bounds our objective

function from below.

Definition 11.10
Dual LP
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We can take any LP in standard form (the “primal program”) and transform

it into an equivalent, dual LP (the “dual program”). Take the primal program as

it was written before. Then, the dual program seeks to minimize b⃗ · y⃗, subject to

AT y⃗ ≥ c⃗ and y⃗ ≥ 0.

This can be thought of as a generalization of the way that we solved the moti-

vating example:

Example 11.11

Theorem 11.12 (Weak LP Duality)
For any feasible solution to the primal program x⃗ and feasible solution to the

dual program y⃗,

b⃗ · y⃗ ≥ c⃗ · x⃗.

Proof. Any solution to the primal program satisfies

∑
j

yj

∑
i

Aijxi

 ≤∑
j

yjbj = b⃗ · y⃗,

since this is the primal constraints summed over all yi . Similarly, any solution to

the primal program satisfies

∑
i

xi

∑
j

Aijyj

 ≥∑
i

xici = c⃗ · x⃗,

since this is the dual constraints summed over all xi . On the other hand, the left

hand side of both equations is the same: the first equation computes yTAx, while

the second computes xTAT y. Therefore, b⃗ · y⃗ ≥ c⃗ · x⃗, as desired.

Theorem 11.13 (Strong LP duality)
If x∗ is optimal solution to the primal program and y∗ is the optimal solution

to the dual program, then equality holds;

c⃗ · x⃗∗ = b⃗ · y⃗∗.
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Game Theory!

12.1 Motivation: Prisoner’s Dilemma
Two prisoners, prisoners A and B. Their sentenced vary based on whether or not

they choose to testify against the other:

A/B silent testify

silent 1/1 3/0

testify 0/3 2/2

For example, if B testifies against A, but A chooses to remain silent, then B will

walk free, while A will serve 3 years in prison.

Intuitively, the best outcome is to both stay silent. However, from either indi-

vidual perspective, it is always better to testify; if B knows that A will testify, it is

better for B to testify, and if B knows that A will stay silent, it is still better for B

to testify. This leads to the only “stable outcome”, which is for both prisoners to

testify. In this scenario, neither prisoner has motivation to deviate.

12.2 Games
More generally, game theory seeks to predict and reason about the actions of ratio-

nal agents in situations of conflict.

Definition 12.1 (Game)
In this class, we will only deal with two-player games between player A and

B. Let A be the utility matrix of player A, and B be the utility matrix of player

B. Then, we say that Aij (resp. Bij ) is the utility of player A (resp. player B)

given the action i of player A and action j of player B.

For example, in the prisoner’s dilemma:

A B

-1 -3

0 -2

-1 0

-3 -2
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A is the “row player” and B is the “columm player”. The first row/column repre-

sents staying silent, and the second row/column represents testifying.

12.3 Two-player zero-sum
In a zero-sum game, Aij = −Bij for all i, j. In other words, “my gain is your loss”.

These games can be fully described by matrix A or B.

Example 12.2
Rock-paper-scissors is a zero-sum game.

R P S

R 0 -1 1

P 1 0 -1

S -1 1 0

There is no “stable outcome” for this game, if we insist that each player must

stick to one action only:

• If I know the other player will pick R, I switch to P

• If they know I will switch to P , they will switch to S

• If I know they will switch to S, I switch to R

• ...

If we allow randomized strategies, then the pair of strategies ((1/3,1/3,1/3), (1/3,1/3,1/3))

is stable, because there is no motivation for either player to deviate from this truly

random strategy.

Definition 12.3 (Nash Equilibrium)
A nash equilibrium is an outcome such that no player has an incentive to

unilaterally deviate.

Theorem 12.4 (Nash, 1950)
Every finite game has a Nash equilibrium.
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Theorem 12.5 (Min-Max Theorem – Von Neumann, 1928)
Let P = {x|x ≥ 0,

∑
xi = 1}, Q = {y|y ≥ 0,

∑
yi = 1}. For any A, let

VR = max
x∈P

min
y∈Q

xTAy

and

VC = min
y∈Q

max
x∈P

xTAy.

Then, VR = VC = V .

Think of P as the set of strategies that the row player can choose from, and Q

the set of strategies that the column player can choose from. xTAy can be thought

of as the utility of the row player given that he chooses strategy x, and the column

player chooses strategy y. Then, VR represents the utility of the row player if he

plays first, while VC represents the utility of the row player if his adversary plays

first.

Proof follows from LP duality.

12.4 Stock Market
Let xt be the index of a stock on day t. Initially, x0 = 0. On day t, you have to predict

if xt = xt−1 + 1 or xt = xt−1 − 1. After you have made your prediction, xt is revealed.

If your prediction is correct, you make money; otherwise, you lose money.

Additionally, on day t, you get advice from n experts telling you that the index

will go up or down the next day.

Definition 12.6 (Regret)
Define the regret to be the number of mistakes that I make, m, minus the

number of mistakes that the best expert would make, m∗.

Our goal is to minimize regret.

Example 12.7
Assume m∗ = 0.

If m∗ = 0, at least one of the experts plays the market perfectly. In this case, we
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can use the Halving algorithm:

• Maintain a list of “credible” experts that have not made any mistakes, S

• At each step, predict the majority pick of experts in S

• Remove from S anyone who made a mistake

The regret of the Halving algorithm is O(logn). A mistake is made if and only

if at least half of the experts in S predict wrong, in which the set S is reduced by at

least half. Since |S | = n in the beginning, we make at most logn mistakes.

Example 12.8
Now consider the general case, i.e., m∗ ≥ 0.

One idea is to use an iterated halving algorithm. Run the halving algorithm

until all experts have made a mistake; then, reset S to all experts, and repeat. The

regret of this algorithm is O(logn · (m∗ + 1)), since we need to run the algorithm at

least m∗ + 1 times.

Intuitively, this is inefficient, since we “reset” our knowledge each time we reset

the algorithm. An algorithm that better captures the intuition that we want to

retain information about each expert is the weighted majority algorithm:

• maintain weight wi for each expert i

• initially, all weights are 1

• at day t, predict according to the weighted majority

• set wi = wi/2 for each expert i that was wrong.

Claim 12.9
The weighted majority algorithm achieves regret of ≤ 1.4m∗ + 2.4logm.

Proof. Let W t denote the total weight of all experts on day t. Each time a mistake

in the algorithm is made, at least half of the total weight of all experts is halved,

i.e., W t ≤ 3W t−1/4 in these rounds, which implies

W t ≤
(3

4

)m
W 0 =

(3
4

)m
n.
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On the other hand, given that the best expert makes m∗ mistakes, his weight wt
i∗ =

(1/2)m
∗
. So, we have (1

2

)m∗
= wt

i∗ ≤W t ≤
(3

4

)m
n,

which implies

m∗ log1/2 ≤m log3/4 + logn,

which reduces to

m−m∗ ≤ 1.4m∗ + 2.4logn.

13 April 4, 2023
Intractability I.

13.1 P, NP, NP-Completeness
add motivating examples

• Optimization problem: on input I , find an object satisfying some property

and having min/max weight

• Search problem: on input I and value K , find an object satisfying some prop-

erty and having weight ≤ K or ≥ K

• Decision problem: on input I and value K , decide if there exists an object

satisfying some property and having weight ≤ K or ≥ K

Example 13.1
Search for an s − t shortest path.

• Search: given K , output a path from s to t of length ≤ K , or output that one

does not exist.

• Decision: output yes if there exists a path ≤ K , and no otherwise.

In general, decision ≤ search ≤ optimization. For example, we can deduce a

solution to the decision problem above by using the search algorithm. Therefore,
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if the decision problem is “hard”, it must be the case that all other instances of the

problem are hard.

Definition 13.2 (P Class)
A decision problem π is solvable in polynomial time π ∈ P if there is an

algorithm A and constant c s.t. for every input x ∈ π of length n, A(x) runs in

O(nc) time and A(x) returns the correct answer, i.e., A(x) returns yes if and

only if π(x) returns yes.

NP does not mean “non-polynomial”; instead, it means “nondeterministic poly-

nomial time”. A good wrong name to remember is “nifty proofs”.

Definition 13.3 (NP Class)
A decision problem π is in nondeterministic polynomial time π ∈NP if there

is an algorithm Vπ (called the “verifier”) and constants c,c′ s.t.

• Vπ takes two inputs, x an instance of π, and y a “certificate” or “proof”

• Vπ runs in O((|x|+ |y|)c)

• for every instance x of π of size n, π(x) is yes if and only if there exists

y of size |y| ≤ nc
′

such that Vπ(x,y) is yes. conversely, if π(x) is no, then

Vπ(x,y) is no for all possible y.

In other words, the class of NP problems is the class of problems for which

there exists a “nifty proof”, i.e., a polynomial certificate y with length |y| ≤ nc
′
.

Example 13.4
The s − t shortest path problem is in NP.

Let x = (G,s, t,k) be an instance of the shortest path problem. Let y be any input

(it does not necessarily have to mean anything). Then, let the verifier algorithm

V (x,y) return YES if and only if y is a path in G from s to t of length ≤ k.

• This verifier is linear in the inputs, since it just needs to check that y is a valid

path

• If the answer to the problem is YES, then a path with length |y| ≤ k is polyno-
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mial. Otherwise, the algorithm will return NO for all possible y.

Example 13.5
The 3D matching problem is in NP.

Let x = (H,k) be an instance of the 3D matching problem, where H = (V ,E) is

a hypergraph with E ⊆ V 3. The 3D matching problem seeks to find the maximum

set of edges that do not share end points, i.e., that forms a matching.

Let y be any input. The verifier V (x,y) returns YES if and only if y is a set of

hyperedges in H of size ≥ k that do not share endpoints. This verifier is polynomial.

On the other hand, the problem itself (i.e., finding the “nifty proof” y) currently

does not have a known polynomial time algorithm, so it is not in P .

Example 13.6
SSSP. Given G = (V ,E) and s ∈ V , output d(s,v) for all v ∈ V .

As written, this problem is not in NP (or P), since P/NP are classes of decision

problems, and this is not a decision problem.

Example 13.7
The no-shortest path problem: given G = (V ,E), s, t ∈ v, and k, output YES if

no path from s to t has length ≤ k and NO otherwise.

This problem is in NP because it is in P (for example, we can solve the s − t
shortest path in polynomial time, and check if the shortest path has length ≤ k).

Since we can solve the problem itself in polynomial time, the verifier can ignore

any certificate and just solve the problem itself. This demonstrates the following

theorem.

Theorem 13.8
P ⊆NP .

Proof. Let π ∈ P be a decision problem with polynomial time algorithm A. Then,

the verifier Vπ(x,y) = A(x) works.
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13.2 Current State of the World

EXPNP P NPC

• It is unknown whether P = NP

• Equivalently, it is unkonwn whether P and NPC overlap. If the overlap is

non-empty, then all problems in NP can be reduced to P , implying that P =

NP . Otherwise, there are NPC ⊆ NP problems not in P , implying that P ,

NP .

• It is known that P , EXP .

• It is known that NP ⊆ EXP . Problems in NP have polynomial time verifiers,

so an EXP algorithm for every problem in NP is to bash through every possi-

ble certificate, which takes O(2O(nc)), and see if the verifier ever returns YES.

This is EXP because the length of each certificate is assumed to be polyno-

mial.

Definition 13.9 (Many-one polynomial time reduction)
Let Q and π be decision problems. A many-one polynomial time reduction

from Q to π is an algorithm R that takes in x, an instance of Q, and outputs

y, an instance of π, such that

• R runs in polynomial time

• if Q(x) is yes, then π(y) is yes

• if Q(x) is no, then π(y) is no
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We say Q ≤p π to denote that Q can be reduced to π. Note that π is “harder”,

since if we can solve π in polynomial time, this implies that we can solve Q in

polynomial time by the reduction.

Definition 13.10 (NP-Complete)
π ∈ NP -complete if and only if π ∈ NP and π is NP-hard. Formally, Q ≤p π

for all Q ∈ NP . Informally, π is at least “as hard” as every other problem in

NP.

14 April 6, 2023
Intractability II.

14.1 Circuit-SAT
The input to Circuit-SAT:

• Boolean circuit C on variables x1, . . . ,xn

Output:

• YES if C is satisfiable, and NO otherwise.

Definition 14.1
A boolean circuit is a directed acyclic graph. Each node represents a boolean

gate, e.g., AND, OR, NOT, that takes in the appropriate number of inputs and

outputs any number of outputs which all have the value of the operation on

the inputs. One of the nodes is designated as the output node. The input

nodes x1, . . . ,xn are fed through the graph, and the output of the graph is said

to be the output value of the output node.

Boolean circuits can be evaluated in linear time. In particular, because they

are DAGs, there is a topological ordering of the vertices. Since the input nodes

x1, . . . ,xn are sources, and the output node is a sink, we can use DP to compute the

value of each node in linear time.

Circuit-SAT asks whether C is satisfiable. C is said to be satisfiable if there

exists an initial assignment to x1, . . . ,xn which produces an output value of 1. The

fastest known algorithm is to brute force all inputs, 2n.
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Theorem 14.2 (Cook-Levin)
Circuit-SAT is NP-complete.

For any problem π, there are two steps to show that π is NP-complete:

• prove that π ∈NP .

• prove that there exists a reduction Q ≤p π from any problem Q ∈NP .

Claim 14.3
Circuit-SAT ∈ NP.

Proof. Verifying Circuit-SAT is equivalent to evaluating a boolean circuit in linear

time, which we discussed above is possible with dynamic programming.

To prove that Circuit-SAT is NP-hard, we will make use of the following theo-

rem:

Theorem 14.4
Let Q be some decision algorithm, and A an algorithm solving Q in p(n) time

on inputs of size n. Then, for every fixed n, there is a Boolean circuit Cn of

size poly(p(n)) s.t. for every n-length input x, Q(x) = Cn(x). And, Cn can be

constructed in poly(p(n)) time.

Assumption of the model:

• Let Li be the state in memory at step i.

• Between states Li and Li+1, a single operation is performed transforming Li
into Li+1.

• Then, there is a fixed boolean circuit M that takes Li to Li+1, which has size

poly(p(n)), and can be written down in poly(p(n)). This is a reasonable as-

sumption because this is how processors work.

Proof. Look at a run of A on size n inputs. Each operation can be modelled by

a change in state from Li to Li+1 on whatever machine is running our algorithm.

Therefore, given the sequence of states L0, . . ., Lp(n) which runs A, there is a sequen-

tial circuit taking L0 to Lp(n) with size poly(p(n)), so we are done.
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Theorem 14.5
Circuit-SAT is NP hard.

Proof. Let VQ be the verifier algorithm for Q. Let x be an instance of Q of size n.

VQ(x,y) where |x| = n and |y| = p(n) ∈ poly(n). Let N = |x| + |y| ∈ poly(n). By the

previous theorem, there exists a boolean circuit CN such that CN (x,y) = VQ(x,y)

for all x,y which is constructable in poly(n) time.

Now we have a circuit CN which takes x,y as input and produces VQ(x,y) in

poly(n) time. We want to reduce x itself to a boolean circuit problem. Since x has

a binary representation, hard wire its input in CN , which produces a circuit CN,x

whose only input is a certificate y.

Finally, Q(x) has a solution if and only if there exists some certificate y such that

VQ(x,y) = 1. Since the circuit CN,x takes in any certificate and produces VQ(x,y) in

polynomial time, finding Q(x) is equivalent to seeing whether there exists an input

to CN,x which produces a positive output value, which is Circuit-SAT, and we are

done.

14.2 CNF-SAT, 3-SAT
CNF: Conjunctive Normal Form.

Definition 14.6
F is a CNF formula on x1, . . . ,xn if it is of the form

C1 ∧C2 ∧ . . .∧Cm,

where each Ci is a clause of the form (l1∨ . . .∨ lki ), and each literal li is either

xr or ¬xr for some r.

F is a 3-CNF formula if every clause has three literals. The 3SAT problem takes

in some 3-CNF formula F on n variables and outputs whether there is a boolean

assignment on which F evaluates to true.

Theorem 14.7
3SAT is NP-complete.
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Proof. 3SAT is in NP because it is trivial to check whether a boolean assignment y

satisfies F.

Now, we show that 3SAT is NP-hard by showing that there exists a reduc-

tion from Circuit-SAT to 3-SAT. Take any instance of Circuit-SAT C on n variables

x1, . . . ,xn, with t gates and m wires. Since we may assume everything is connected,

all sizes are O(m). At each gate, define a variable gi . Now, construct the following

“clauses” on g1, . . . , gt (these are not necessarily proper CNF clauses):

• The value of the output gate is 1

• For every i, gi computes the value of the gate. For example, the clause cor-

responding to g2 would be (g2 ⇐⇒ ¬x3) for a NOT gate which takes x3 as

input.

It is possible to construct all of these “clauses” in linear time O(m) by iterating

through the circuit in topological order.

To finish, rewrite each “clause” with proper CNF clauses. For example, (gi ⇐⇒
¬a) is equivalent to (¬gi∨¬a)∧ (gi∨a). By writing out the full normal form of each

possible gate, it is possible to show that we can replace each “clause” with at most

3 CNF clauses, hence our final expression is a 3-CNF formula and we are done.

15 April 11, 2023
Intractability III.

15.1 Vertex Cover

Definition 15.1
A vertex cover of a graph G = (V ,E) is a vertex subset S ⊆ V such that for

every edge (u,v) either u ∈ S or v ∈ S or both.

Example 15.2
Vertex cover of K4.

All four vertices forms a vertex cover of size 4. Any subset of three vertices

forms a vertex cover of size 3. There are no vertex covers of size ≤ 2, because then
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there exists an edge between the other two vertices which is not covered by the two

selected vertices.

The vertex cover decision problem has graph G = (V ,E) and integer K . The

output is YES if and only if there is a subset S ⊆ V of size ≤ K s.t. S is a vertex

cover.

Theorem 15.3
Vertex Cover is NP-complete via 3SAT≤pVC.

As a reminder, to prove this, we need to show:

• Vertex Cover is in NP. This is easy to show, since it is easy to check whether a

given vertex cover is valid.

• there exists a graph G = (V ,E) and integer K such that G,K is created in

polynomial time in n and m, given a 3CNF formula F

• F has a satisfying assignment if and only if G has a vertex cover of size ≤ K .

Proof. First, we construct our reduction:

• Let m be the number of clauses and n the number of literals. Set K = n+ 2m.

• For each variable xi , create two vertices connected by an edge xTi , xFi . In a

vertex cover, this means that either xTi or xFi needs to be selected, which can

be thought of as the variable xi being true or false.

• For every clause (lj1, lj2, lj3), create a triangle with vertices lj1, lj2, lj3.

• For each ljk in clause j, connect ljk to xTp if ljk = xp and connect ljk to xFp if

ljk = ¬xp.

This reduction can be constructed in linear time. Now we show that it works.

(FORWARD DIRECTION) Let x1 = b1, . . . ,xn = bn be a satisfying assignment

to F. First, add xTi to S for all xi with bi = 1, and xFi to S for all xi with bi = 0.

Then, each clause has at least one of the literals set to 1, since we have a satisfying

assignment. Pick one of the literals set to 1 and put the vertices corresponding to

the other two literals in S.

58



Andrew Liu April 11, 2023

Since we are adding two vertices per clause, and one additional vertex per vari-

able (xTi or xFi ), |S | = n+ 2m. Now we show that S is a vertex cover.

• Edges of the form (xTi ,x
F
i ) are covered, since we always select either xTi or xFi .

• Edges that are clause edges, i.e., (ljk , ljh), are covered, since we selected two

vertices per clause triangle.

• All other edges are of the form (ljk ,xBp ), where if ljk = xp, then B = T , and if

ljk = ¬xp, then B = F. If ljk ∈ S, then this edge is covered. Otherwise, ljk was

set to true. If ljk = xp, this means that xp was set to true, so xTp was selected

and the edge was covered. If ljk = ¬xp, this means that xp was set to false, so

xFp was selected and the edge was covered.

(BACKWARDS DIRECTION) Let S be a vertex cover of G of size ≤ K = 2m+ n.

Every one of the m clause triangles must have at least 2 vertices in S. Each of the n

edges must have at least one vertex in S. Thus, |S | ≥ 2m+n = K ≥ |S |, so |S | = 2m+n.

Now, for our assignment, if xTi ∈ S, set xi = 1, otherwise set xi = 0.

To show that this works, we need to show that every clause triangle contains a

literal that was set to true. Consider any clause (l1, l2, l3). Exactly two vertices are

in S. Suppose WLOG that l3 was not selected to be in S, and consider the edge

(l3,xBp ). If l3 = xp, xTp has to be in S, which implies that xp is true, hence l3 is true.

Otherwise, l3 = ¬xp, so xFp has to be in S, implying that xp is false, lence l3 is still

true. Therefore, the literal not selected to S in each clause triangle evaluates to

true, so we are done.

15.2 Subset Sum
• Input: n integers S = {a1, . . . , an} and a target integer t encoded in binary

• Output: YES if there are ai1 , . . . , aik ∈ S such that
∑k

j=1 aij = t. Otherwise, NO.

This can be solved in O(nt) with knapsack DP. Note that this runtime is pseu-

dopolynomial, since it is not polynomial in log t, which is the size of t in binary.

Theorem 15.4
Subset Sum is NP-complete via VC≤pSubset Sum.
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Proof. First, our reduction. Let G = (V ,E) and K be an instance of the vertex cover

problem. Let E = {0, . . . ,m− 1}. Create two types of integers in S:

• for every e ∈ E, be = 4e.

• for every v ∈ V , bv = 4m +
∑

e∈E,e=(u,v) 4e.

Then, let the target t = K ·4m+2
∑

e∈E 4e. This is a polynomial-time reduction. Now,

we show that it works.

(FORWARD DIRECTION) Let C be a vertex cover of G of size K . Each edge is

covered by C once or twice. Let E′ ⊆ E be the edges in G that are covered by C

exactly once. Now, let

A = {bv : v ∈ C} ∪ {be : e ∈ E′}.

Note that ∑
v∈C

bv = |C|4m +
∑

e∈E−E′
2 · 4e +

∑
e∈E′

4e.

Therefore, ∑
b∈A

b =
∑
v∈C

bv +
∑
e∈E′

be = |C|4m + 2
∑
e∈E

4e = t,

as desired.

(BACKWARDS DIRECTION) Suppose A ⊆ S sums to t. A contains vertex num-

bers bv for vertices from some set C, and edge numbers be for edges in some set E′.

As before, E′ represents the set of edges that we can cover only once. We know that∑
v∈C

bv +
∑
e∈E′

be = t.

The key is to look at each of the numbers in A, in base 4. The number of times

that edge e is counted corresponds to the number of times that e is counted in the

sum. In the sum over the vertices
∑

v∈C bv , each edge is counted at most twice, since

it is covered at most twice. In the sum over the edges in E′, each edge is covered

only once. Therefore, in each coordinate e ∈ {0, . . . ,m− 1}, the value is at most 3 (in

particular, there are no carries).

Now, the target has a value of 2 in each edge coordinate. Since the contribution

to each edge e is (number of times edge covered by C) + (1 if e ∈ E′ and 0 otherwise),
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and we know this has a value of 2 for each edge, this means that the number of

times each edge is covered by C is at least 1, so C covers every edge. Therefore, C

is a vertex cover, and we are done.

16 April 13, 2023
Random Walks I.

16.1 Scotland Yard
Consider a game on K5. A runner is allowed to move around the vertices, jumping

to an adjacent vertex once each move. A detective, which is visible to the runner,

is also able to move around the vertices. After some number of moves, the location

of the runner is visible to the detective. If they happen to be in the same place, the

detective wins. Otherwise, the game continues.

16.1.1 Version 0.5

In this version of the game, the runner cannot stay put. Let Xi = (pA, . . . ,pE) be

a tuple denoting the probabilities that the runner ends up at each vertex after i

moves, assuming that he moves randomly. For example, X1 = (0,1/4,1/4,1/4,1/4),

and X2 = (1/4,3/16,3/16,3/16,3/16).

Claim 16.1
Let A be the adjacency matrix of a graph G. Then (Aℓ)ij counts the number

of paths from i to j in G with length exactly ℓ.

For example, 

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0



2

=



4 3 3 3 3

3 4 3 3 3

3 3 4 3 3

3 3 3 4 3

3 3 3 3 4


.

By repeatedly squaring the adjacency matrix K5, we have a way to compute Xℓ for

any ℓ. When we normalize the rows, we get a transition matrix. Multiplying to

infinity, it turns out that Xi converges to (1/5,1/5, . . . ,1/5).
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In general, it can be shown that for any graph G that Xi converges to (p1, . . . ,pn),

where pj is the ratio of the degree of j to the total number of edges.

16.2 Gambling
I start with $20. I choose to play a game until I either go broke, or double my

money and reach $40. The game that I play has a 50/50 chance of winning and

losing. Each win gives me $5, while each loss causes me to lose $5.

Definition 16.2
A stochastic process is a sequence of random variables X0, X1, . . ..

Definition 16.3
A markov process is a memoryless stochastic process, i.e., Xt+1|Xt =

Xt+1|Xt ,Xt−1, . . . ,X0.

Definition 16.4
A markov process is time-homogenous when P[Xt = u|Xt−1 = v] is indepen-

dent of t.

Definition 16.5
The period of a directed (resp. undirected) graph is defined as the greatest

common divisor of the lengths of all directed (resp. undirected) cycles in the

graph. If the period is 1, the graph is said to be aperiodic. Otherwise, the

graph is periodic.

Recall that we can represent the transition state for any (time-homogenous)

Markov process with a unique walk matrix W .

Definition 16.6
A stationary distribution x⃗ is any distribution satisfying x⃗W = x⃗.

For example, in Scotland yard, the distribution (1/5,1/5,1/5,1/5,1/5) is a sta-

tionary distribution.
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Theorem 16.7 (Fundamental Theorem of Markov Chains)
Let Gχ be a Markov Chain for Markov Process χ = {Xt}t≥0. If Gχ is strongly

connected and aperiodic, then every random walk on Gχ converges to a

unique stationary distribution.

17 April 20, 2023

17.1 More on Fundamental Markov Chain Theorems
Some review from last lecture:

• A stochastic process is a sequence of random variables {Xt}

• A Markov process is a memoryless stochastic process, meaning that Xt+1|Xt =

Xt+1|Xt ,Xt−1, . . . ,X0. In other words, “the weather today depends only on the

weather yesterday”.

• A Markov chain is is a graphical depiction of a markov process. Let χ be

a markov process. Under the assumption of time homogeneity, the corre-

sponding markov chain is the graph Gχ = (D,E,w), where D is the set of

states (Xt ∈ D), E is a set of edges, and w an edge-weight function.

– directed edges take states to other states. edges are included only if their

corresponding probabilities are non-zero

– the edge-weight function maps edges to transition probabilities

– the matrix with entries wuv = w(u,v) for all u,v ∈ D makes up the tran-

sition matrix.

• Time homogeneity is the property that P[Xt+1 = u|Xt = v] is independent of

t.

• A random walk is an emulation of a Markov Process on a Markov Chain. A

trajectory is a specific walk. Random walks are described by their probabil-

ity distributions, i.e., P[Xt] = x⃗(0)W t for some initial distribution and walk

matrix.

• A stationary distribution is some distribution satisfying x⃗W = x⃗.
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Now,

Theorem 17.1 (Fundamental Theorem of Markov Chains)
If a markov chain is strongly connected and aperiodic, then all walks con-

verge to a unique stationary distribution π.

The following two subtheorems are true (and together imply the bigger theo-

rem):

Theorem 17.2
If a markov chain is strongly connected, then there exists a unique stationary

distribution π.

Theorem 17.3
If a markov chain is aperiodic, then all walks converge to some stationary

distribution.

17.2 Examples of Markov Chain properties

Example 17.4

0 1

1

1

Properties:

• not strongly connected

• aperiodic, since it has a self-loop

• W =

0 1

0 1


• This graph has a unique stationary distribution π = (0,1). Also, every ran-

dom walk converges to this distribution in one step. This shows that the

fundamental theorem of markov chains is not bidirectional.
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Example 17.5

0 11 1

Properties:

• not strongly connected

• aperiodic

• All distributions are stationary, and therefore all walks converge to their ini-

tial distribution.

Example 17.6

0 1 2

1

1

1

Properties:

• not strongly connected

• periodic, since all cycle lengths are even

• there is one stationary distribution π = (1/2,1/2,0)

• there are many walks that don’t converge to π. for example, any (x,y,0) with

x,y , 1/2 flips the mass of the first two nodes at each timestep.

17.3 Monto-Carlo Markov Chain
Idea: want to produce samples from a probability distribution. To do this, design

a markov chain whose stationary distribution is the target distribution, and then

perform samples by performing a random walk.

not finished
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18.1 Approximation Algorithms
Notation:

• Let P denote a class of problems

• Let P ∈ P denote a specific problem

• Let A denote an algorithm for the class of problems

• Let x be a proposed specific solution

• Let A(P ) be the quality of the solution obtained by A

• Let OPT(P ) be the quality of the optimal solution

α-approximation algorithm: for P , we are given some approximation ratio

α ≥ 1 In minimization, A(P ) ≤ α ·OPT(P ). In maximization, OPT(P ) ≤ α · A(P ).

18.2 Approximation Schemes
• minimization: ∀ε > 0, ∀P ∈ P ,

S(P ,ε) ≤ (1 + ε)OPT(P ).

• maximization: ∀ε > 0, ∀P ∈ P ,

OPT(P ) ≤ (1 + ε)S(P ,ε).

Efficient – polynomial time approximation scheme. Fully efficient – fully poly-

nomial time approximation scheme, i.e., polynomial in both the size of the problem

and 1/ε.

Example 18.1
Maximum matching.
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Proposed algorithm: go over edges greedily, and add an edge to the matching

if possible. Let |M | be the size of the matching obtained using this algorithm. Let

|M∗| be the size of the true maximal matching.

Note that solving this problem exactly can be done with max flow. On the other

hand, this approximation algorithm is a linear scan through the vertices, so the

runtime is much more efficient.

Claim 18.2
This algorithm is a 2-approximation, i.e., |M∗| ≤ 2|M |.

Proof. e ∈ M, e∗ ∈ M∗, label e with e∗ if they share an endpoint. Each e ∈ M has

≤ 2 labels, since M∗ is a matching, so the total number of labels is ≤ 2|M |. On

the other hand, every edge in M∗ is included as a label. If not, then any edge that

is not included as a label is not adjacent to any of the edges in M, meaning that

the greedy algorithm would have added it. So the total number of labels is ≥ |M∗|,
which completes the proof.

Example 18.3
Vertex Cover.

Recall that the vertex covering problem seeks to find the smallest subset S of

vertices such that every edge in the graph is incident to at least one vertex in S.

Consider some maximal matching found by the previous greedy algorithm, M.

Let V (M) denote the set of vertices adjacent to edges in M. Then, |V (M)| is a 2-

approximation to the size of best vertex cover |V ∗|.

Claim 18.4
V (M) is a vertex cover, and |V (M)| ≤ 2|V ∗|.

Proof. If V (M) is not a vertex cover, there exists some edge that is not adjacent

to any other vertices in V (M), so it can be added to M by the greedy algorithm.

Further, |M | ≤ |V ∗|; since M is a matching, V ∗ must include at least one vertex in

each edge. Therefore, |V (M)| = 2|M | ≤ 2|V ∗|.

Example 18.5
LP.
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Consider the following integer LP: take variables xv ∈ {0,1}, and compute min
∑
xv

subject to the constraint xu + xv ≥ 1 for all (u,v) ∈ E.

This formulation is equivalent to the min-vertex cover problem. Since we are

forcing integer values, this problem is NP-hard. But, we can relax it so that 0 ≤ xv ≤
1 and obtain a polynomial time solution.

For this fractional LP, take xv , round it to the nearest integer, and include it

in the VC if it becomes 1. This works, because xu + xv ≥ 1 implies at least one of

{xu ,xv} is ≥ 1/2, so every edge is covered.

Claim 18.6
The rounding LP achieves a 2-approximation for VC.

Proof.
∑

v∈V round(xv) ≤2OPT(fractional)≤2OPT(LP).

19 April 27, 2023

19.1 Exponential Time Algorithms

Definition 19.1
O∗(f (n)) = f (n) ·poly(n).

Analogously to the way that normal big-O notation ignores constant time fac-

tors, O∗ notation ignores polynomial time factors, since these are considered “cheap”

when doing exponential time analysis.

19.2 Subset Sum
• input: A = {a1, . . . , an} and target t

• output: whether there is some S ⊆ A such that
∑

s∈S s = t.

The brute force algorithm is to try every possible subset. This is O∗(2n).

To improve this runtime, we can also “meet in the middle”. Consider splitting

A into two lists of size n/2. Now construct L1 which has the sum of all possible sub-

sets of the first list, which has size 2n/2. Let L2 be the set of all t −w for all possible

sums w of the second list, which has size 2n/2. Now, the problem reduces to finding
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a common element between L1 and L2. Using hashing, sorting, or otherwise, this

can be done in O(n2n/2) ∈O∗(2n/2).

• Brute force algorithm: O∗(2n) time, O∗(1) space

• Meet in the middle: O∗(2n/2) time, O∗(2n/2) space.

• Schroppel-Shamir: O∗(2n/2) time, O∗(2n/4) space.

• Nederlof-Wegrzycki: O∗(2n/2) time, O∗(20.0249999n) space.

• Bansal, Garg, Nederlof: O∗(20.86n) time, poly space.

19.3 3SAT
• input: 3CNF formula F on n variables and m clauses

• output: is there a boolean assignment to the n variables satisfying F?

The brute force algorithm is to try every possible assignment of variables, which

is O∗(2n).

Branch on variables:

• Plug in x1 = 1 and recurse. If the result was satisfiable, return this result.

• Otherwise, the result was not satisfiable, then try x1 = 0 and recurse. Return

the result.

Each “branch” reduces the number of variables by 1, so the total runtime satis-

fies T (n) ≤ 2T (n− 1) +O∗(1) ∈O∗(2n).

Claim 19.2
2-SAT has a polynomial time algorithm.

Intuition: each branch resolves all clauses in the same connected component.

Example 19.3
Improved algorithm.

Using this fact, we can create a new branching algorithm:

69



Andrew Liu April 27, 2023

• Simplify F by removing redundant variables in clauses. If F is a 2-CNF, then

solve F in O∗(1)

• Otherwise, pick a clause with three distinct variables (ℓ1, ℓ2, ℓ3). There are

exactly 7 < 23 assignments which satisfies this clause; branch on these as-

signments, and recurse.

• Now, the total depth of the recursion tree is at most n/3, since we guarantee

the assignment of three distinct variables at each branch. This implies that

the total number of nodes is O(7n/3). In each node, we perform O∗(1) work to

reduce the formula, so our runtime is O∗(7n/3) ∈O∗(1.91n).

Example 19.4
Even more improved algorithm.

Instead of directly branching on all 7 possible valid triples (ℓ1, ℓ2, ℓ3), we can

branch one at a time:

• try ℓ1 = 1 and recurse. If this works, return that it works.

• otherwise, try ℓ1 = 0, ℓ2 = 1 and recurse. If this works, return that it works.

• otherwise, try ℓ1 = 0, ℓ2 = 0, ℓ3 = 1 and recurse. return the result.

Like the last algorithm, this accounts for all possible triples (ℓ1, ℓ2, ℓ3), but does so

by branching one at a time, which is slightly more efficient. The runtime is

T (n) ≤ T (n− 1) + T (n− 2) + T (n− 3) +O∗(1).

If we guess T (n) ∈ O∗(an), this reduces to a3 = a2 + a + 1, which gives a ≤ 1.84,

so the total runtime is T (n) ∈ O∗(1.84n). This is OK. The best known algorithm is

O∗(1.308n).
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20 May 2, 2023

20.1 Online Learning

Definition 20.1
In online learning, the length of the input is not known in advance. The

problem instance can grow forever, and the goal of an algorithm is to, with

a fixed amount of memory, produce reasonable outputs for each new part of

the input that is read.

Defining competitiveness for deterministic and random algorithms:

Definition 20.2
A deterministic algorithm A is α-competitive if it satisfies

CA(R) ≤ α ·C
OPT

(R) + c,

for constants α,c. A randomized algorithm A is α-competitive if it satisfies

E[CA(R)] ≤ α ·C
OPT

(R) + c.

Adversarial inputs in the randomized case are assumed to have no knowledge

of the outcome of each random decision. This is called an oblivious adversary.

20.2 BIT for self-organizing lists
BIT is a randomized algorithm for the problem of self-organizing lists. Consider

the variant of this problem where we can move elements to the front of the list

for free. We showed previously that the deterministic MTF algorithm achieves 2-

competitiveness on this problem.

To start, randomly initialize a binary array b for each entry in the list. Then, for

each access:

• flip b(x) = 1− b(x)

• if b(x) = 1, move x to the front of L.
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This means that every element is moved to the front of L on every other access.

Theorem 20.3
BIT is 7/4-competitive.

Proof. As before, define:

• Ai the number of elements before xi in Li and L∗i

• Bi the number of elements before xi in Li and after in L∗i

• Ci the number of elements after xi in Li and before in L∗i

• Di the number of elements after xi in Li and L∗i

The potential function we will use is

Φi = (inversions with b(y) = 0) + 2 · (inversions with b(y) = 1).

This is a valid potential function, since it starts at Φ0 = 0 and is always nonneg-

ative. Now there are two cases to analyze, each of which occurs with probability

1/2:

• If b(xi) = 0, BIT moves xi to the front of Li . This fixes Bi inversions and creates

Ai inversions.

Let A′i be the number of elements in the Ai new inversions created that OPT

fixes. Let ti be the number of transpositions made afterwards. OPT fixes A′i
inversions and creates at most ti new inversions.

Finally, each inversion fixed/destroyed contributes e.v. 3/2 to the potential

function. So,

E[∆Φ] ≤ 3
2

(Ai −A′i −Bi + ti).

• If b(xi) = 1, BIT does not move xi to the front, so no inversions are fixed by

BIT. However, all of the inversions corresponding to Bi now contribute 1 to

the potential instead of 2, since b(xi) flipped, hence Bi are “fixed”.

As before, if OPT moves forwards by A′i , then A′i new inversions are created.

If we let ti be the number of transpositions made afterwards, at most ti new
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inversions are created. So,

E[∆Φ] ≤ 3
2

(A′i −Bi + ti).

The true cost to access xi in BIT is Ai +Bi + 1, while the true cost to access xi in

OPT is Ai +Ci + 1 + ti . The amortized cost is

Ai +Bi + 1 +∆Φ ≤ Ai +Bi + 1 +
1
2

(3
2

(Ai −A′i −Bi + ti) +
3
2

(A′i −Bi + ti)
)

=
7
4
Ai −

1
2
Bi +

3
2
ti + 1

≤ 7
4

(Ai +Ci + ti + 1),

which completes the proof.

20.3 Regret
Here, we say that our adversarial sequence of inputs is adaptive, i.e., it has access

to our algorithm and what it has predicted so far. To determine the performance

of a learning algorithm, we incur some cost for each action that we take.

Then, we take a benchmark loss, and compare it with our true loss, to determine

the regret of the algorithm. For example, B =
∑T

i=1 mina∈A ct(a) is a benchmark

where the best actions in hindsight are taken at every step, while B = mina∈A
∑T

i=1 ct(a)

is the cost incurred by picking the best fixed action in hindsight.

Let C be the true cost incurred by the algorithm. If

1
T

(E[C]−E[B]) = 0,

the algorithm has no regret with respect to the benchmark. External regret is the

regret with respect to the benchmark of the best fixed action.

20.4 Weighted Majority
not finished
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21 May 4, 2023

21.1 Unconstrained Optimization
Given an objective function f : Rn→ R, our goal is to compute

x∗ = argmin
x∈Rn

f (x).

We assume that f is continuous and smooth. One idea is gradient descent:

• generate a sequence of values x0 → x1 → . . . → xt, which satisfies f (xt+1) ≤
f (xt) for all t.

• xt+1 = xt − η∇f (xt).

Definition 21.1
f is β-smooth for β ≥ 0 if and only if, for all x,δ,

δT∇2f (x)δ ≤ β|δ|2.

Recall that ∇2f (x) is the Hessian matrix, with ∇2f (x)i,j = ∂2f (x)/(∂xi∂xj ). The

statement of β-smoothness is equivalent to saying that the largest eigenvalue of the

Hessian has magnitude less than β.

We can show that if f is β-smooth, then

f (x+ δ) ≤ f (x) +∇f (x)T δ+
1
2
β|δ|2.

Plugging in δ = −η∇f (x),

f (x+ δ) = f (x)− η|∇f (x)|2 +
βη2

2
|∇f (x)|2.

Since we want to make progress at each step,

η|∇f (x)|2 ≥
βη2

2
|∇f (x)|2 =⇒ η ≤ 2

β
.
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If we choose η = 1/β, then we guarantee

f (xt+1)− f (xt) ≤ − 1
2β
|∇f (x)|2.

Definition 21.2
f is convex if and only if

f (x+ δ) ≥ f (x) +∇f (x)T δ

for all x,δ.

In other words, convexity means that “the function always lies above the tan-

gent plane”.

Definition 21.3
x is an ε-optimal solution if and only if f (x)− f (x∗) ≤ ε.

Assuming that f is convex, we can get arbitrarily close to x∗. We would like to

find how many steps of GD it would take to achieve xt ε-optimal.

Let x = xt and δ = x∗ − xt in the convexity condition. Then,

f (x∗) ≥ f (xt) +∇f (xt)T (x∗ − xt).

This implies by Cauchy-Schwarz:

f (xt)− f (x∗) ≤ −∇f (xt)T (x∗ − xt) ≤ |∇f (xt)||x∗ − xt | ≤ ε.

Therefore, the gradient must satisfy

|∇f (xt)| ≤ ε
|x∗ − xt |

.
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Definition 21.4
f is α-strongly convex for α > 0 if and only if

δT∇f (x)δ ≥ α|δ|2,

for all x,α.

We can show that if f is α-strongly convex,

f (x+ δ) ≥ f (x) +∇f (x)T δ+
α
2
|δ|2.

Let x = x∗ and δ = xt − x∗. Then,

f (xt) ≥ f (x∗) +∇f (x∗)T δ+
α
2
|δ|2 = f (x∗) +

α
2
|δ|2 =⇒ f (xt)− f (x∗) ≥ α

2
|xt − x∗|2.

This shows that

|∇f (xt)|2|x∗ − xt |2 ≥ (f (xt)− f (x∗))2 ≥
(α

2
|xt − x∗|2

)2
=⇒ |∇f (xt)|2 ≥

α(f (xt)− f (x∗))
2

.

Also, we previously showed f (xt+1)− f (xt) ≤ −(1/2β)|∇f (xt)|2, so

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗)− 1
2β

α
2

(f (xt)− f (x∗)) ≤ (f (xt)− f (x∗))
(
1− 1

4κ

)
,

where κ = β/α > 1 is the condition number of f . This implies that each step of our

GD decays the distance between xt and the global minimum by a factor of 1/κ, so

the number of steps required is

O

(
κ log

f (x0)− f (x∗)
ε

)
.

Theorem 21.5
If f is β-smooth and α-strongly convex, then for any ε > 0, there exists con-

stant c such that xt is ε-optimal for any

t ≥ c ·κ log
f (x∗)− f (x0)

ε
.
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Note that κ roughly tells us how convex the function is; β bounds the Hessian

eigenvalues from above, and α bounds them from below.

22 May 9, 2023

22.1 Sublinear Algorithms

Definition 22.1
Sublinear algorithms don’t need to read the entire input to produce an an-

swer.

Exact sublinear algorithms are usually bad. For example, consider the triangle

detection problem:

• The input is a graph G in matrix format. Output YES if there is a triangle and

NO otherwise.

If G is completely bipartite, there are no triangles. If G is completely bipartite

+ one edge, then there are triangles. This shows that it is impossible to consistently

produce a correct answer to this problem without reading Ω(n2) of the input.

A more reliable approach is to try to approximate the answer:

• Classical approximations are used for optimization problems. An α-approximation

factor indicates an answer within α of OPT.

• Property testing is an approximation for decision problems. This should al-

ways return YES on a YES-instance. This should return NO on NO-instances

that are “very far” from YES-instances, with some high probability. It can

return anything on other instances.

22.2 Diameter of a point set
This problem demonstrates a classical approximation.

• Input: n × n matrix D where Di,j denotes a distance between i and j. This

means that D is symmetric and satisfies the triangle inequality, i.e.,

Di,j ≤Di,k +Dk,j .
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• Output: D∗ which is the largest distance between two points, i.e., the maxi-

mum entry of the matrix.

The input has size N = n2. Any sublinear algorithm is o(N ) ∈ o(n2). An algo-

rithm with approximation factor c should satisfy

D∗

c
≤ D̃ ≤D∗.

Algorithm:

• pick an index i∗ ∈ [n].

• read the i∗th row, output D̃ = maxjDi∗,j .

The runtime is O(n), so it is sublinear. We claim D̃ ≥ D∗/2. If the true diameter

has a point in the i∗th row, then D̃ = D∗. Otherwise, Di∗,a + Di∗,b ≥ Da,b = D∗, so

max{Di∗,a,Di∗,b} ≥D∗/2. Therefore, this algorithm is a 2-approximation.

22.3 Testing for Connectedness
This problem demonstrates a property testing approximation.

• Input: G = (V ,E) on n vertices with maximum degree d in an adjacency list

format.

• Output: whether or not G is connected.

Our approximation will return:

• YES if G is connected

• NO if G is not ε-close to being connected

• anything otherwise

Definition 22.2
G is ε-close to being connected if it is possible to add εnd edges to make G

connected.
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Claim 22.3
if G is not ε-close to connected, then G has > εdn connected components.

Proof. If not, then we can add edges between them.

Claim 22.4
if G is not ε-close to connected, then G has ≥ εdn/2 connected components

of size at most 2/(εd).

Proof. The number of connected components is at least εdn. So if we suppose

otherwise, then the number of connected components with size ≥ 2/(εd) is > εdn/2.

On the other hand, the total number of vertices is ≤ n, so this is a contradiction.

Claim 22.5
If G is not ε-close to connected, at least εnd/2 vertices are in small connected

components.

Proof. Follows from the previous claim.

Algorithm: let c ≥ 2 be some constant. Repeat c/(εd) times:

• pick a node s uniformly at random

• run BFS from s until either 2/(εd) have been seen, or a CC of size < 2/(εd) has

been found. In the first case, continue running the algorithm. In the second

case, return NO.

• If the algorithm reaches the end of its iterations, return YES.

The runtime is O(1/(εd) · (2/(εd) + 2/ε)) ∈O(1/(dε2)), which is constant time, so

this algorithm is sublinear.

Claim 22.6
If G is connected, the algorithm will correctly always return YES. Otherwise,

it returns NO with probability at least 3/4.
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Proof. The YES direction is true. Now suppose G is not ε-close to connected. By

the third claim, there are > εdn/2 nodes in a small component, so the probability

that s is in a small CC in one iteration is > εd/2. Therefore, the probability that

none of the iterations sample a vertex in a small component is (1 − εd/2)2c/(εd) ≤
(1/e)c ≤ 1/4.

22.4 Sortedness of a List
• Input: List L = {x0, . . . ,xn−1}.

• Output: YES if L is sorted, NO if the list is not ε-close from sorted with high

probability.

Definition 22.7
A list of length n is ε-close to sorted if it is possible to delete nε elements and

get a sorted list.

Algorithm: think of the list as a binary search tree. Pick a random index i and

search for xi by binary searching the list. Return YES if we end up at index i with

no inconsistencies found during the search, and NO otherwise.

23 May 11, 2023

23.1 Streaming Algorithms
Basic idea: have a very large stream of inputs of length n, but o(n) memory.

In sketching, given stream X, we want to compute sketch C(X).
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