
6.106 Project 4 Final Write-Up
AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu

Dec 13, 2023

Contents
0 Project Log 2

1 Executive Summary 3

2 Testing and Evaluation 3

2.1 Testing . 3

2.2 Eval . 3

3 Identification of Performance Bottlenecks 3

4 Optimizations to Eval 5

5 Optimizations to Search 5

6 Meta-optimizations 6

7 Failed optimizations 6

8 Team Dynamics 7

9 Completeness, Expected Performance 7

10 Acknowledgment 7

1

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

0 Project Log

Date Start Person Duration Description

Sat November 18 2:00 pm A, I, V 3 reading up on the project

Sun Novemeber 19 10:00am I 2 create correctness test suite, python interfacing with UCI

Mon November 20 4:30 pm V 1 maintaining monarch positions

Mon November 29 8:00 pm everyone 3 read literation on NNUE

Mon November 20 6:00 pm everyone 3 project design document

Fri December 1 5:00 pm V 2 testing scripts

Fri December 1 8:00 pm V 2 unsuccessfully trying to remove extra sentinel squares

Fri December 1 8:00 pm R 6 unsuccessfully tried to represent entire board with uint64

Fri December 1 10:00 pm V 1 piece_t using bitfields

Sat December 2 0:30 am V 1 removing laser coverage and testing that

Sat December 2 4pm I 3 create eval function testing suites, profile. Noticed that

abs_qi bottleneck for eval computation

Sat December 2 4pm R 3 small optimizations: inlining, precomputation of recipro-

cal floats

Sat December 2 4pm R 3 changed to 10 x 10 board

Sun December 3 10:00 pm V 4 optimizations (is_draw, sort, inlining, etc.)

Mon December 4 12:00 am A 12 more robust testing scripts, set up collab to retrain

weights and start training games, turn various misc.

functions into lookup tables, other small optimizations

Mon December 4 7:00 pm V 2 measuring playing power to find best bot

Mon December 4 4:00pm I 2 maintaining abs_qi as a part of the board state

Mon December 4 5:00pm everyone 5 merging branches, including lookup tables, final touch

ups

Thu December 7 7:00 pm everyone 3 beta write-up

Fri December 8 6:00 pm A 24 implemented young siblings wait along with a number of

other search heuristics

Sat December 9 12:00 pm R 6 began merging our beta board rep with the rank 0 board

rep, for speeding up eval

Sat December 9 6:00 pm A,R,V 6 continued optimizing the board rep. wrote scraper for the

scrimmage server and curated a small lookup table based

on common moves. fixed a bug in the parallel search.

Sun December 10 6:00 pm A,R 6 condensed representation for the transposition table,

among other smaller heuristics.

Mon December 11 6:00 pm everyone 2 worked on poster presentation.

Mon December 11 8:00 pm I 5 wrote more complex script for generating a larger opening

book.

Mon December 11 11:00 pm V 1.5 exposing evaluation of positions with deep search to the

program interface

Tues December 12 6:00 am A 1.5 condensed move_t representation and unsuccessfully

tried implementing ABDADA parallel search.

Tues December 12 6:00 pm everyone 3 final attempt at larger opening book, implemented some

smaller heuristics like stockfish eviction policy and un-

rolling.

Wed December 13 7:00 pm everyone 2 final write-up

2

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

1 Executive Summary
Our optimizations were generally split into three different categories: those that improved the speed of eval,

those that improved the efficiency of search, and meta-optimizations. We found that optimizations to both

eval and search proved to be equally important for the performance of our bot, while the meta-optimizations,

which includes a small opening book and weight tuning, improved performance slightly.

2 Testing and Evaluation

2.1 Testing
For testing prior to the beta, we set up a simple testing framework with the goal of giving us some idea of

how effective our optimizations were without having to submit them to the autotester.

Our testing framework included a simple correctness script that ran perft on two input binaries, and

a small test suite of pre-generated fens, and compared the outputs. The purpose of this script was to test

correctness for changes that were purely speed optimizations and did not change any actual logic in how

moves were selected (e.g., changing the board representation).

We also set up a simple speed comparison script that compared the nodes searched per second for two

input binaries. Our hope with this script was that we could easily identify when an optimization was

“effective” by comparing this metric between two binaries.

Unfortunately, even with awsrun, there was lots of variance and it was quite difficult to use in practice.

Therefore, between the beta and the final, we took inspiration from post 1275, and set up testing on Modal

Labs to make our testing pipeline more efficient. Despite the scripts that we set up, testing still felt very

inefficient, and it was always difficult to tell if an optimization was making the bot better. Thus, setting

up Modal ended up being a critical part of our improvements after the beta, as it streamlined testing and

made things much easier. We ended up using a few hundred CPU hours on testing alone; by utilizing the

free credits given to new accounts, we luckily did not have to pay much for this compute.

2.2 Eval
After setting up Modal labs, the way that we evaluated two binaries was to play 200 games with fis = 10 0.4.

From here on out, we notate performance improvements with e.g. [70 30], denoting that the optimization

led to a 70% win rate of the bot with the improvement over the bot without the improvement. Performance

improvements made before the beta will not have this metric attached.

3 Identification of Performance Bottlenecks
Based on perf reports, we identified that the following items were, often unnecessarily, degrading our per-

formance (sorted roughly by decreasing performance impact)

• searching for the monarchs in get_monarch (25% of all execution time)

• tracing the laser paths in the laser coverage heuristic (17% of all execution time)

3

https://piazza.com/class/lhz1w6i2c5x6je/post/1275
https://modal.com/
https://modal.com/

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

Time spent Function

27.01% laser coverage
23.40% memmove avx unaligned erms
7.84% low level make move
5.21% evaluateMove
3.84% get move
3.73% scout search
3.33% eval
3.31% generate all
2.44% square of
2.33% make move
2.20% tt hashtable get
1.88% beam of
1.84% abs qi
1.45% rnk of
1.32% get monarch

Figure 1: Profiling after monarchs optimization, laser coverage took a lot of time, and had little weight in
the evaluation

Time spent Function

31.28% eval
20.11% fen to pos
17.32% abs qi
4.47% mface
4.47% rel qi
4.47% square of
3.35% fil of
2.79% compute zob key
2.23% rnk of
1.68% dir of
1.68% find monarchs
1.68% mcede
1.12% read
1.12% get monarch

Figure 2: Profiling eval after removing laser coverage heuristic; abs qi was observed to be the bottleneck

• copying/moving position_t objects (which representing the board state) (up to 15% of all execution

time)

• search through the board history in is_draw

• precalculating the absolute and relative qi heuristics

• sort_insertion in searchPV and scout_search

• function call overhead for simple functions such as square_of, rnk_of, or fil_of

• mutex operations around accesses to node_count_serial

4

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

4 Optimizations to Eval
Based on the performance bottlenecks that we identified, we made the following optimizations related to

position evaluation for the bot:

• removing the laser coverage heuristic (we don’t calculate laser coverage and we keep the original weights

for all the other heuristics)

• decreasing the size of the position_t struct by storing a piece_t in a single uint8_t by using bitfields

for the type, color, and rotation of the piece. we also replaced the original 16-by-16 board by a 10-by-10

board.

• decreasing the size of the move_t struct by storing it in a uint32_t. [60 40]

• early termination of the history search in is_draw once

– enough repetitions of the current positions are found for a draw to be declared (return true), or

– a move which removes a piece from the board is encountered (return false)

• stored a bit board for pawns and monarchs. this made metrics like abs_qi, rel_qi, among others,

trivial to compute, which ended up giving us significant speedup [70 30]. we give credit to the rank

0 beta code for giving us major inspiration on more efficient ways to optimize this; we had a version

of this that was much more inefficient before the beta, and we ended up implementing many of the

optimizations that were present in rank 0 beta to help give us more speedup.

• changing sort_insertion to first move all moves with key 0 to the end of the array and then sort the

remaining moves using qsort from the standard library. for very small arrays, we performed a manual

insertion sort instead of calling qsort. [60 40]

• moved functions such as square_of, rnk_of, fil_of, qi_at, centrality into lookup tables. [60 40]

• various inlining and unrolling of loops inside of the main eval function. [55 45]

5 Optimizations to Search
• parallelized both search_scout and search_pv with the young siblings wait algorithm. we were able

to do some fine tuning by adjusting the number of branches to search serially in both methods before

running the rest in parallel. we ultimately found that 5 serial searches for search_scout and 6 serial

seraches for search_pv gave us the best performance. [70 30]

• before getting all moves inside of both search_scout, search_pv, we first (serially) explored the

move in the hashtable, betting on the fact that this hashtable move would lead to pruning with high

frequency, thus allowing us to skip move generation. [60 40]

• made functions specific to either search_scout or search_pv, which were originally in search_common.

our reasoning was that it was quite easy to copy functions into either the scout search or pv search

files and save the overhead from functions that head to check search type. [55 45]

5

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

• reduced the size of the transposition table and set the cache size to be 4-way associative. we reduced

the size by condensing the ttRec_t type into a uint64_t, which was possible because various types

inside of the struct could be modified from int to smaller types like uint8_t. after grid searching, we

found the 4-way cache to give the best performance. overall, our optimizations to the transposition

table led to [60 40].

• this change was inspired by the poster presentation given by elo_engineers: we slightly modified

the metric that was being used to evict entries from the transposition table, to be the one used by

stockfish. [55 45]

6 Meta-optimizations
• We implemented a small lookup table that we created by scraping the most recent 1000 games from

the server, and adding the most commonly winning moves from the first 6 depths into a lookup table.

The final table did not end up having that many positions, but still led to around [60 40] improvement.

We tried to make a much more extensive opening table, but were unfortunately not able to make it

work (see “failed optimizations”).

• We retrained weights after significantly modifying our search logic. After running 1.2 million games

using the data generation script provided, we trained new weights based on the data from the games,

where we intentionally left out the laser_coverage statistic as to fine-tune more effectively. After

training new weights multiple times on the same data, we found that there were a few local minima

that the new weights fell into, including a local minima that seemed to be similar to the original

weights provided by the staff. After trying all of these local minima, we found that the local minima

corresponding to the weights that seemed similar to the original staff weights worked the best. Thus,

we ended up with weights that were numerically similar to the staff weights, maybe off by at most

0.1 in all metrics (the only exception being laser_coverage, which we set to 0, since that is how we

retrained the weights). [60 40].

7 Failed optimizations
• we attempted to memoize the abs_qi metric by precomputing and then only making point updates

inside of low_level_make_move. even though this seemed like it should obviously improve performance,

we unfortunately did not see much speedup. we’re not really sure why; one guess is that the weight

for the abs_qi metric is small, so maybe it did not matter too much? (we’re not convinced that this

is a valid reason, but we weren’t able to come up with any other explanation)

• we attempted to create a very large opening book by creating a script that generated strong open-

ing moves given a fixed branching factor b. unfortunately, despite searching with go depth 10 for

branching factor b = 4, the opening book we came up did not beat the opening book generated just

by looking at common moves. we feel we might have been able to come up with a stronger open book

by combining these two strategies, i.e., running a deep eval on common moves, which is one way we

might have been able to further improve our bot.

6

https://github.com/kobolabs/stockfish/blob/be470063cea1283ed53c4b74a03b96a7cc7acf6c/tt.cpp#L107
https://github.com/kobolabs/stockfish/blob/be470063cea1283ed53c4b74a03b96a7cc7acf6c/tt.cpp#L107

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

• inside of search, we currently search the hash table move serially before generating the move list. we

also tried searching the killer move table moves killer_a and killer_b before generating the move

list, since killer moves would also end up at the front of the move list after sorting (behind the hash

table move). this degraded the performance of the search considerably; we’re not too sure why.

8 Team Dynamics
We didn’t always stick to a strict division-of-labor plan, but instead started working on whatever seemed

most important as the next step after checking that nobody else has already done it. Sometimes, two people

tried doing the same thing when it was unusually complicated and then we combined our ideas.

9 Completeness, Expected Performance

We expect that our code runs without issues, i.e., fully compiles both serially and parallel, and makes legal

moves. Based on tests in the scrimmage server, we expect our win rate against reference_1 to be close to

100%.

10 Acknowledgment
• We acknowledge the staff for their help on Piazza and during office hours. We are grateful for their

hard work on making this class run as smoothly as possible.

• Post 1275 about Modal helped us improve our workflow significantly.

7

https://piazza.com/class/lhz1w6i2c5x6je/post/1275

AmarBot: Ishank Agrawal, Richard Chen, Viktor Fukala, Andrew Liu 6.106 Project 4 Final Write-Up

• We acknowledge the Chess Programming Wiki website for explaining the relevant chess bot program-

ming concepts, many of which are relevant to Leiserchess too.

8

	Project Log
	Executive Summary
	Testing and Evaluation
	Testing
	Eval

	Identification of Performance Bottlenecks
	Optimizations to Eval
	Optimizations to Search
	Meta-optimizations
	Failed optimizations
	Team Dynamics
	Completeness, Expected Performance
	Acknowledgment

