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1 February 7, 2023

1.1 Introduction
General goal of this class is to get better at statistical methods, understand their

applicability, and their limitations.

Midterm dates: March 3rd, April 6th, and May 4th. They take place during

class. There is no final. There is also on data presentation project. Grading is

(MT 1 +MT 2 +MT 3 + P roject +HW )/5.

1.2 Review: Fundamental Theorems
Let X1, . . . , be i.i.d. r.v. (independent and identically distributed random variables)

with E[Xi] = µ, Var[Xi] = σ2.

Theorem 1.1 (Strong Law of Large Numbers)

Xn B
1
n

n∑
i=1

Xi
a.s.−→
n→∞

µ.

The weak law of large numbers says the same thing, with convergence in prob-

ability (instead of almost sure convergence).

Theorem 1.2 (Central Limit Theorem)

√
n
Xn −µ
σ

=
1

σ
√
n

n∑
i=1

(Xi −µ)
d−→

n→∞
N (0,1)

1.3 Review: Notions of Convergence

Definition 1.3 (Almost Surely)
We say that Yn

a.s.−→
n→∞

Y if

P[ω : Yn(ω) −→
n→∞

Y (ω)] = 1.
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Definition 1.4 (In Probability)
We say that Yn

p
−→
n→∞

Y if

lim
n→∞

P[|Yn −Y | > ε] = 0,

for all ε > 0.

Definition 1.5 (In Lp)
We say that Yn

Lp−→
n→∞

Y if

lim
n→∞

E[|Yn −Y |p] = 0.

Definition 1.6 (In Distribution)
We say that Yn

d−→
n→∞

Y if

lim
n→∞

P[Yn ≤ x] = P[Y ≤ x],

for all x ∈ R where the CDF of Y is continuous.

The following are equivalent to converging in distribution:

• limn→∞E[f (Yn)] = E[f (Y )] for all continuous bounded functions f .

• limn→∞E[exp(ixYn)] = E[exp(ixY )] for all x ∈ R.

Relationships between the types of convergence:

Yn
a.s.−→
n→∞

Y =⇒ Yn
p
−→
n→∞

Y =⇒ Yn
d−→

n→∞
Y .

Also, if q ≥ p ≥ 1,

Yn
Lq−→

n→∞
Y =⇒ Yn

Lp−→
n→∞

Y .

Operations and Convergence:

• If f is a continuous function, then

Yn −→n→∞ Y =⇒ f (Yn) −→
n→∞

f (Y )

holds for all three modes of convergence.
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• If f is a continuous function, then

(Xn,Yn) −→
n→∞

(X,Y ) =⇒ f (Xn,Yn) −→
n→∞

f (X,Y )

holds for all three modes of convergence. For example, if f (x,y) = ax + by, or

f (x,y) = xy, or f (x,y) = x/y with y , 0.

• Xn
a.s.−→
n→∞

X and Yn
a.s.−→
n→∞

Y implies (Xn,Yn)
a.s.−→
n→∞

(X,Y ). The same holds for con-

vergence in probability. In fact, any mix of convergences in probability or

almost surely will work (i.e., two convergences in probability implies conver-

gence almost surely, etc). However, the same cannot be said if at least one

of the single distributions converges in distribution, with the only exception

being Slutsky’s Theorem.

Theorem 1.7 (Slutsky’s Theorem)
Suppose

• Yn
d−→

n→∞
Y

• Zn
p
−→
n→∞

c, where c is a real number.

Then,

(Yn,Zn)
d−→

n→∞
(Y ,c).

Example 1.8
Slutsky’s theorem implies Yn +Zn

d−→
n→∞

Y + c, YnZn
d−→

n→∞
cY , etc.

This is equivalent to showing that (Yn,Zn)
d−→

n→∞
(Y ,c) implies Yn + Zn

d−→
n→∞

Y +

c. To see this, take the result of the convergence operations listed above, with

f (X,Y ) = X +Y , f (X,Y ) = XY , or whatever you want.
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2 February 9, 2023

2.1 Delta Method
Last time, we learned about Slutsky’s Theorem. Why is it the case that

Yn
d−→

n→∞
Y

Zn
d−→

n→∞
Z

 ≠⇒ Yn +Zn
d−→

n→∞
Y +Z?

Consider the following counterexample:

Yn =
√
n
Xn −µ
σ

d−→
n→∞

N (0,1) and Zn = −Yn
d−→

n→∞
N (0,1).

In this case, Yn +Zn ↛ Y +Z =N (0,2).

Theorem 2.1 (The Delta Method)
Suppose

•
√
n(Yn −θ)

d−→
n→∞

N (0,σ2)

• g is continuously differentiable at θ

Then,
√
n(g(Yn)− g(θ))

d−→
n→∞

N (0, g ′(θ)2σ2).

Note the similarities to the CLT. If we treat Yn =
∑n
i=1Xi , then our θ is E[Xi].

The only difference here is that we’re calculating the distribution of g(Yn) instead

of Yn itself.

Lemma 2.2
If |Yn −Xn|

p
−→
n→∞

0 and Xn
d−→

n→∞
X, then Yn

d−→
n→∞

X.

Proof. Let Zn = Yn −Xn. By Slutsky’s theorem, (Xn,Zn)
d−→

n→∞
(0,X), which implies

Xn +Zn = Yn
d−→

n→∞
X.
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2.2 Kissing Experiment (confidence intervals)
Let p be the proportion of couples that turn their head to the right when kissing.

Observe n = 124 couples kissing. It turns out that 80 couples turned to the right.

Therefore, we can estimate p with the estimator

p̂ =
80

124
= 64.5%.

It seems intuitively true that there is a preference for couples to turn to the right,

since 65.5% > 50%. On the other hand, if we observed n = 3 couples, and found

that 2 of them turned to the right, we would be less convinced that this is necessar-

ily the case. At what threshold are we actually convinced that p > 50%?

Define a sequence of random variables {Ri}1≤i≤n, where Ri = 1 if the ith couple

turns to the right, and Ri = 0 otherwise. For the sake of our model, we assume:

• Ri ∼ Bern(p). Modelling each Ri as a r.v. is how we deal with the lack of

other information. If we knew more, we could use psychology or physics to

deduce whether there is a natural tendency to lean right while kissing (in

other words, we would not need to use statistics).

• R1, . . . ,Rn are mutually independent. This is reasonable since the behavior of

one couple does not interfere with the behavior of another.

Now, by the strong law of large numbers,

p̂ = Rn
a.s.−→
n→∞

p.

How do we quantify how confident we are with our estimate when n is not in-

finitely large? By the CLT,

P
√n Rn − p√

p(1− p)
≤ x

 −→n→∞ P(N (0,1) ≤ x),

for all quantiles x. In other words, for large n, we may say

√
n(Rn − p) ≈N (0,σ2) =N (0,p(1− p)),
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which implies

P[|Rn − p| ≥ a/
√
n] ≈ P[|N (0,1)| ≥ a/σ ] = 2− 2Φ

( a
σ

)
.

Let qα/2 be the (1−α/2) quantile ofN (0,1), i.e.,

1−α/2 = Φ (qα/2) .

Then,

P[|N (0,1)| ≤ qα/2] = 1−α.

Per the equation earlier, we thus have that, with probability 1−α,

|Rn − p| ≤
qα/2σ√
n
≤
qα/2
2
√
n
,

following from the fact that σ =
√
p(1− p) ≤ 1/2.

Definition 2.3
The interval given by [

Rn −
|qα/2|
2
√
n
,Rn +

|qα/2|
2
√
n

]
is called the 1−α Confidence Interval (C.I.) for p.

Intuition checks:

• This naming makes sense, because the probability that p lies in this interval

is 1−α (by rearranging the equation we had earlier).

• When α = 1, we are 0% confident that p lies in the interval. Indeed, q1/2 = 0,

so the interval has length 0.

• When α = 0, we are 100% confident that p lies in this interval. Indeed, |q0| =
∞, so the interval spans all possible values for p.
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3 February 14, 2023

3.1 Statistical Models and Identifiability

Definition 3.1
Let Ω be a sample space. A statistical model is given by

(Ω, (Pθ)θ∈Θ),

where Pθ is a probability distribution on Θ for each θ ∈Θ.

The goal of the statistical model is to estimate the paramter θ. Θ is called the

parameter set; as an example, if we are trying to estimate a proportion, we say that

the parameter set is [0,1]. If θ exists, we say that the model is well-specified, and

this particular value of θ is called the true parameter.

Example 3.2
Consider the kissing experiment from last time.

In this example,

• Ω = {0,1}.

• Ri ∼ Bern(p), i.e., P[Ri = 1] = p, P[Ri = 0] = 1− p.

• The statistical model given by each Ri is
(
{0,1},Bern(p)p∈[0,1]

)
.

• The statistical model given by a pair (R1,R2) is
(
Ω(1),Bern(p)⊗Bern(p)

)
, where

Ω(1) = {(0,0), (0,1), (1,0), (1,1)}.

Definition 3.3

• Parametric model: We assume Θ ⊆ Rd for finite d

• Nonparametric model: Θ can be infinite dimensional

• Semiparametric model: Θ = Θ1 ×Θ2, with one finite-dimensional and

the other infinite-dimensional. We won’t cover these models in this

class.

10
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Example 3.4
Common models for different distributions.

Gaussian Model: (
R, (N (µ,σ ))(µ,σ )∈R×(0,∞)

)
.

Exponential model: (
(0,∞), (Exp(λ))λ∈(0,∞)

)
.

Binomial model: (
{0,1}, (Bern(p))p∈[0,1]

)
.

Poisson model: (
N, (Pois(λ))λ∈(0,∞)

)
.

Definition 3.5
The parameter θ is identifiable if and only if θ ∈Θ 7→ Pθ is injective.

In other words, we can identify θ if and only if each θ maps to a unique dis-

tribution. As an example where this is not satisfied, suppose X ∼N (µ,σ2), and we

observe the indicator Y = 1X≥0. Since

P[Y = 1] = Φ

(
−
µ

σ

)
,

µ and σ2 are not identifiable, since there are many different combinations that

produce the same observed distribution. On the other hand, θ = µ/σ is identifiable.

3.2 Estimation
Given a statistical model (Ω, (Pθ)θ∈Θ), and some sequence of i.i.d. X1, . . . ,Xn ∼ Pθ,

we generate some prediction θ̂n for θ. We call θ̂n an estimator for θ.

11
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Definition 3.6
An estimator θ̂n of θ is called consistent if

θ̂n
p
−→
n→∞

θ.

This estimator is called strongly consistent if

θ̂n
a.s.−→
n→∞

θ.

This estimator is asymptotically normal if

√
n(θ̂n −θ)

d−→
n→∞

N (0,σ2).

Definition 3.7
The bias of an estimator θ̂n of θ is given by

bias(θ̂n) = E[θ̂n]−θ.

Definition 3.8
The quadratic risk of an estimator θ̂n ∈ R is given by

R(θ̂n) = E[|θ̂n −θ|2] = Var[θ̂n] + bias2(θ̂n).

Recall that θ is a constant, i.e., E[θ] = θ, so the secondary definition follows by

expansion:

E[|θ̂n −θ|2] = E[θ̂2
n − 2θθ̂n +θ2]

= (E[θ̂2
n]−E[θ̂n]2) + (E[θ̂n]2 − 2θE[θ̂n] +θ2)

= Var[θ̂n] + bias2(θ̂n).

3.3 More on Confidence Intervals
Let (Ω, (Pθ)θ∈Θ) be a statistical model with observations X1, . . . ,Xn. Say Θ ⊆ R and

let α ∈ (0,1).

• A “confidence interval of level 1 − α for θ” is defined as a random interval

12
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(based on our observations) I , which does not depend on θ, such that

Pθ[θ ∈ I ] ≥ 1−α.

• A “confidence interval of asymptotic level 1−α for θ” is defined as limn→∞In,

where

lim
n→∞

Pθ(θ ∈ In) ≥ 1−α.

There are a few reasons why we define confidence intervals as inequalities,

rather than equalities. The reality is that we can rarely get exact estimates (even in

the asymptotic limit) without knowing more information about the true parameter.

Consider the following example.

Example 3.9
Recall the kissing experiment from last lecture.

By the central limit theorem, we deduced

√
n

Rn − p√
p(1− p)

d−→
n→∞

N (0,1).

Then, we said that

lim
n→∞

P
p ∈ Rn − qα/2√p(1− p)

√
n

,Rn +
qα/2

√
p(1− p)
√
n

 = 1−α.

This interval by itself is not a confidence interval, since it depends on p. There

are a few ways to resolve this issue.

• The Conservative Method: this is the method that we used implicitly last

lecture. We know that p(1− p) ≤ 1/4, so we can remove the dependence on p

be relaxing the bounds of our interval. This gives us:

Iconservative =
[
Rn −

qα/2
2
√
n
,Rn +

qα/2
2
√
n

]
.

Indeed,

lim
n→∞

P(p ∈ Iconservative) ≥ 1−α,

13
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so this is a valid confidence interval (which is asymptotic). Note that our

probability is no longer exact, since we had to relax our interval to account

for all possible values of p.

• Solve for p: we could also manually solve for p, since our interval is of the

form

Rn −
qα/2

√
p(1− p)
√
n

≤ p ≤ Rn +
qα/2

√
p(1− p)
√
n

.

Rearranging both inequalities, we seek the roots1 +
q2
α/2

n

p2 −
2Rn +

q2
α/2

n

p+R
2
n = 0.

Our desired interval is now:

Isolve =

 1

1 +
q2
α/2
n

Rn +
q2
α/2

2n

± qα/2

1 +
q2
α/2
n

√
(Rn(1−Rn))

n
+
q2
α/2

4n2

 .
• Slutsky: p̂

a.s.−→
n→∞

p, we can use Slutsky to substitute p for p̂, giving us

I =

p̂ − qα/2√p̂(1− p̂)
√
n

, p̂+
qα/2

√
p̂(1− p̂)
√
n

 .
4 February 15, 2023 (R)

Example 4.1
Let X1, . . . ,Xn ∼ Unif([θ,2θ]) be a sequence of i.i.d. random variables for

some θ > 1. Compute the quadratic risk of θ̂ = min{X1, . . . ,Xn}.

This is order statistics. The minimum order is described by the beta distribu-

tion, which we can use to check our work. (If we know the expected value and

variance of the minimum order statistic over U ∼ Unif[0,1], we could just plug it

in, but we’ll go through the whole derivation here anyways for fun). Recall the

formula for quadratic risk:

R(θ̂n) = Var[θ̂n] + bias2(θ̂n).

14
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First, we compute fθ̂. Note

P[θ̂ ≥ x] = P[Xi ≥ x]n =
(2θ − x

θ

)n
,

so

fθ̂ =
d

dθ

[
1−

(2θ − x
θ

)n]
=
n
θ

(2θ − x
θ

)n−1
.

Now,

E[θ̂] =
∫ 2θ

θ

n
θ

(2θ − x
θ

)n−1
xdx

=
[
−x

(2θ − x
θ

)n] ∣∣∣∣∣∣
2θ

θ

+
∫ 2θ

θ

(2θ − x
θ

)n
dx

=
[
−x

(2θ − x
θ

)n
+
−θ
n+ 1

(2θ − x
θ

)n+1] ∣∣∣∣∣∣
2θ

θ

=
(n+ 2
n+ 1

)
θ.

Also,

E[θ̂2] =
∫ 2θ

θ

n
θ

(2θ − x
θ

)n−1
x2dx

=
[
−x2

(2θ − x
θ

)n
− 2x

θ
n+ 1

(2θ − x
θ

)n+1] ∣∣∣∣∣∣
2θ

θ

+
∫ 2θ

θ

2θ
n+ 1

(2θ − x
θ

)n+1
dx

=
[
−x2

(2θ − x
θ

)n
− 2x

θ
n+ 1

(2θ − x
θ

)n+1
+

−2θ2

(n+ 1)(n+ 2)

(2θ − x
θ

)n+2] ∣∣∣∣∣∣
2θ

θ

=
(
n2 + 5n+ 8

(n+ 1)(n+ 2)

)
θ2.

Finally,

Var[θ̂] = E[θ̂2]−E[θ̂]2 =
θ2n

(n+ 1)2(n+ 2)
.

So,

R(θ̂) = Var[θ̂] + bias2(θ̂) =
θ2n

(n+ 1)2(n+ 2)
+
( θ
n+ 1

)2
=

2θ2

(n+ 1)(n+ 2)
.
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Example 4.2
Consider a sample of n i.i.d. continuous random variables X1, . . . ,Xn with

density

f (x) = e−(x−a)1x≥a,x ∈ R,

where a is an unknown parameter.

(1) Compute E[X1].

(2) Determine whether Xn − 1 is a consistent estimator of a.

(3) Based on Xn, propose a confidence interval for a with asymptotic level

95%.

(1) The given density function is the same density function as an exponentially

distributed r.v. with parameter 1, shifted by a. Therefore, E[X1] = E[Exp(1)]+

a = a+ 1.

(2) By the strong law of large numbers, Xn
a.s.−→
n→∞

a + 1. Let g(x) = x − 1. By the

continuous mapping theorem,

g(Xn) = Xn − 1
a.s.−→
n→∞

a = g(E[Xn]),

so Xn − 1 is a strongly consistent estimator of a.

(3) By the central limit theorem,

lim
n→∞

P
[∣∣∣∣∣∣√n (Xn − a− 1)

1

∣∣∣∣∣∣ ≤ q0.025

]
= P [|N (0,1)| ≤ q0.025] = 95%.

So, a valid asymptotic 95% confidence interval for a is given by

a ∈
[
Xn − 1−

q0.025√
n
,X − 1 +

q0.025√
n

]
.
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5.1 Maximum Likelihood Estimation
We are given i.i.d. x1, . . . ,xn data from a statistical model (Ω, (Pθ)θ∈Θ). Suppose Ω

is a discrete probability space. Our goal is to find an estimator θ̂ that maximizes

our likelihood function

L(x1, . . . ,xn;θ) =
∏
i

Pθ(Xi = xi).

This is the same as maximizing the Log-Likelihood:

logL(x1, . . . ,xn;θ) =
n∑
i=1

logPθ(Xi = xi).

Our maximum likelihood estimator is given by

θ̂ = argmax
θ

(logL(x1, . . . ,xn;θ)).

In the case where Ω is continuous, all definitions are the same, except we re-

place Pθ with fθ, the density of Pθ.

Example 5.1
Compute the maximum likelihood estimator (MLE) given n data points from

the statistical model ({0,1}, (Bern(p))p∈(0,1)).

Note that Pθ(Xi = xi) = pxi (1− p)1−xi . Therefore,

logL(θ) = n(Xn logθ + (1−Xn) log(1−θ)),

and
∂ logL
∂θ

= n
(
Xn
θ
− 1−Xn

1−θ

)
.

Setting the derivative to zero, we get θ̂ = p̂ = Xn as our MLE. This agrees with our

intuition.
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Example 5.2
Consider the statistical model (R, (N (µ,σ2))(µ,σ )∈R×(0,∞)).

From the density of the normal distribution, we have

L(µ,σ2) =
(

1
√

2πσ

)n
exp

− 1
2σ2

n∑
i=1

(xi −µ)2

 ,
and

logL(µ,σ2) = −n
2

log(2πσ2)− 1
2σ2

n∑
i=1

(xi −µ)2.

Maximizing:
∂ logL
∂σ2 =

−n
2σ2 +

1
2σ4

n∑
i=1

(xi −Xn)2.

So, our best variance estimator is given by

σ̂2 =
1
n

n∑
i=1

(xi −Xi)2.

5.2 Relative Entropy
The motivation behind the way that we calculate our maximum likelihood estima-

tor is to get our estimated distribution as close as possible to the actual distribution.

If we let θ∗ be the true parameter, then

θ̂ = argmax
θ

1
n

n∑
i=1

logfθ(Xi = xi)


= argmin

θ

1
n

n∑
i=1

logfθ∗(Xi = xi)−
1
n

n∑
i=1

logfθ(Xi = xi)

 .
By the strong law of large numbers, the quantity inside of the argmin converges

almost surely to

Eθ∗
[
log

fθ∗(X)
fθ(X)

]
.

18



Andrew Liu February 16, 2023

Definition 5.3
The relative entropy between the actual distribution Pθ∗ and some other Pθ
is given by

Eθ∗
[
log

fθ∗(X)
fθ(X)

]
.

This quantity is also called Kullback-Leibler (KL) divergence. This shows

that computing the MLE is the same as minimizing the relative entropy between

the actual distribution, and our predicted distribution.

5.3 Fisher Information, Cramer Rao
Let ℓ(x,θ) = logL(x,θ), and suppose Θ ⊆ R.

Definition 5.4
The Fisher Information I(θ) is given by

I(θ) = Varθ

(
∂
∂θ
ℓ(x,θ)

)
= −Eθ

(
∂2

∂2θ
ℓ(x,θ)

)
.

Note that we are taking the expectation and variance of the inner functions

with respect to θ (i.e., averaging over all possible x). It’s not immediately clear that

these two definitions (expectation and variance) are the same, so we show the proof

below:

Proof. First, we have

∂
∂θ
ℓ(x,θ) =

∂
∂θ

logfθ(x) =
∂/(∂θ)(fθ(x))

fθ(x)
,

and
∂2

∂2θ
ℓ(x,θ) =

[
∂2/(∂2θ)(fθ(x))

]
fθ(x)− [∂/(∂θ)(fθ(x))]2

fθ(x)2 .
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Now,

E
[
∂
∂θ
ℓ(x,θ)

]
=

∫ (
∂/(∂θ)(fθ(x))

fθ(x)

)
· fθ(x)dx

=
d

dθ

∫
fθ(x)dx = 0,

since
∫
fθ(x)dx = 1 always. Thus,

Var
[
∂
∂θ
ℓ(x,θ)

]
= E

( ∂∂θℓ(x,θ)
)2−E[

∂
∂θ
ℓ(x,θ)

]2

=
∫ (

∂/(∂θ)(fθ(x))
fθ(x)

)2

fθ(x)dx

=
∫

(∂/(∂θ)(fθ(x)))2

fθ(x)
dx.

On the other hand,

−E
[
∂2

∂2θ
ℓ(x,θ)

]
= −

∫ 
[
∂2/(∂2θ)(fθ(x))

]
fθ(x)− [∂/(∂θ)(fθ(x))]2

fθ(x)2

fθ(x)dx

=
∫

(∂/(∂θ)(fθ(x)))2

fθ(x)
dx − ∂

∂θ
E
[
∂
∂θ
ℓ(x,θ)

]
= Var

[
∂
∂θ
ℓ(x,θ)

]
,

as desired.

Recall that the bias of an estimator θ̂ of θ is given by

bias(θ̂) = E[θ̂]−θ.

An unbiased estimator is any estimator with no bias.
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Definition 5.5
The Cramer-Rao lower bound gives a lower bound to the variance of any

unbiased estimator. In particular, given unbiased estimator θ̂ for θ,

Var(θ̂) ≥ 1
I(θ)

.

Theorem 5.6 (The MLE is consistent and normal)
Let θ∗ ∈ Θ be the true parameter, with some technical conditions holding

(e.g., the support of fθ cannot depend on θ). Then,

• θ̂MLEn is a consistent estimator, i.e.,

θ̂MLEn
p
−→
n→∞

θ∗.

• It is asymptotically normal:

√
n(θ̂MLEn −θ∗) d−→

n→∞
N (0,1/I(θ∗)).

In particular, by Cramer-Rao, this implies that the MLE gives us the best pos-

sible variance. This theorem demonstrates that, in theory, the MLE gives us every-

thing we want in an estimator. In reality, it is often difficult to compute the MLE,

so we have to resort to more practical estimators that aren’t as perfect.

Example 5.7
As usual, let’s return to the kissing experiment.

In this case, our statistical model was

({0,1}, (Bern(p))p∈(0,1)).

We showed here that the MLE for this model is θ̂MLEn = Xn. Moreover,

ℓ(x,θ) = x lnθ + (1− x) ln(1− p),
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and
∂
∂θ
ℓ(x,θ) =

x
θ
− 1− x

1−θ
,

and
∂2

∂2θ
ℓ(x,θ) = − x

θ2 −
1− x

(1−θ)2 ,

so

I(θ) =
1
θ

+
1

1−θ
=

1
θ(1−θ)

.

Using our theorem, we can put everything together:

√
n(p̂ − p)

d−→
n→∞

N (0,p(1− p)),

which is what we wanted.

6 February 23, 2023

6.1 M-estimation
X1, . . . ,Xn i.i.d. from Pθ drawing from sample space E. In maximum likelihood

estimation, we estimate θ with

θ̂ = argmax
θ

1
n

∑
i

logL(Xi ,θ).

In M-estimation, our goal is to find a function ρ : E ×M→ R, whereM is the

set of all possible θ, such that

θ̂ = argmin
θ

E[ρ(X1,θ)].

Note that θ̂MLE is itself also an M-estimator, by setting ρ(X,θ) = − logL(X,θ).

Example 6.1
Given X1, . . . ,Xn i.i.d. from some unknown P in sample space E ⊆ Rd . Esti-

mate E[X], where X is also distributed as P.

The sample mean Xn = (X1 + . . .+Xn)/n is a valid M-estimator.
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Claim 6.2
If ρ(Xi ,θ) = (Xi −θ)2, then

argmin
θ

1
n

∑
(Xi −θ)2 = Xn.

Example 6.3
Estimate the median of the distribution of X.

The sample median is also a valid M-estimator.

Claim 6.4
If ρ(Xi ,θ) = |Xi −θ|, then

argmin
θ

1
n

∑
|Xi −θ| = sample median.

6.2 Hypothesis Testing
Let (Ω, (Pθ)θ∈Θ) be a statistical model. For some partition {Θ0,Θ1} of Θ:

• H0: θ ∈Θ0 is the null hypothesis

• H1: θ ∈Θ1 is the alternative hypothesis

For k ∈ {0,1}, we say that Θk is a simple hypothesis if Θk = {θk}. It is a composite

hypothesis if it takes the form Θk = {θ : θ > θk}, Θk = {θ : θ < θk}, or Θk = {θ : θ ,

θk}.

Definition 6.5
A test is a function Ψ : Θ → {0,1}, where Ψ = 1 indicates that we reject the

null hypothesis, and Ψ = 0 means that we fail to reject the null hypothesis.

We can define a rejection region R. Then Ψ = 1(R).

Example 6.6
The average waiting time in the emergency room is around 30 minutes. Some

people claim that the New-York Presbyterian hospital has a longer waiting

time.
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Let ω be a random variable modeling the waiting time in the emergency room

at the New-York Presbyterian hospital, in minutes. The null hypothesis (H0) says

that E[ω] ≤ 30. The alternate hypothesis (H1) says that E[ω] > 30. Both hypotheses

in this case are composite hypotheses.

Let Ê[ω] be some estimator that we come up with for E[ω] given some data. A

typical test might look like

Ψ = 1(Ê[ω] > ε),

where ε is a threshold we set for deciding whether or not to reject H0.

6.3 Errors

Fail to Reject Reject

H0 true (θ ∈Θ0) Correct Type I error

H1 true (θ ∈Θ1) Type II error Correct

Definition 6.7
The power function of a test is a function β : Θ→ [0,1] with

β(θ) = Pθ(ψ = 1).

In words, the power of a test measures how likely it is to reject the null hypoth-

esis. This function can be used to measure the likelihood of each error: if θ ∈Θ0,

β(θ) = Pθ[type I error].

In this case, we want the power to be small. If θ ∈Θ1,

β(θ) = 1−Pθ[type II error].

In this case, we want the power to be large.

Example 6.8
Back to the kissing example.
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In this example, our test is Ψ = 1(p̂ > c), for some value of c. So,

Pθ(type I error) = P(p̂ > c) = P
(√
n
(
p̂ − 1

2

)
>
√
n
(
c − 1

2

))
.

(For a type I error to occur, we assume that p = 1/2). If we let c→∞, the probability

of a type I error goes to 0. On the other hand,

Pθ(type II error) = P(p̂ < c) = P
(√
n (p̂ − p) <

√
n (c − p)

)
.

If we want the probability of a type II error to be 0, we need c→ −∞. We cannot

do both at the same time.

Definition 6.9
In the Neyman-Pearson paradigm,

• First, make sure that Pθ[type I error] ≤ α, where α determines the level

of the test (i.e., 5%, 1%, etc.)

• Then, choose c such that Pθ[type II error] is minimized

In the kissing experiment, we therefore want

Pθ=1/2(p̂ > c) ≤ α.

In this case, the test Ψ = 1(p̂ > c) said to have level α. More generally, if we require

lim
n→∞

Pθ=1/2(p̂n > c) ≤ α,

then Ψ is an asymptotic level α test.

lim
n→∞

Pθ=1/2

√n(p̂n − 1/2)√
p̂n(1− p̂n)

>

√
n(c − 1/2)√
p̂n(1− p̂n)

 = P
N (0,1) ≥

√
n(c − 1/2)√
p̂n(1− p̂n)


= 1−Φ

√n(c − 1/2)√
p̂n(1− p̂n)

 = α.

This gives

c =
1
2

+
qα√
n
.
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7.1 p-values
From last lecture: for a test Ψ = 1(θ̂ > c), the level of Ψ determines c.

Definition 7.1
The (asymptotic) p-value of a test Ψ is the smallest (asymptotic) level α at

which Ψ rejects H0.

In general, when we conduct an α-level test, we reject the null hypothesis if we

find that the p-value is ≤ α.

Example 7.2
Back to kissing experiment.

The level (1− 2β) confidence interval for the kissing interval was given by

I =
[
Rn −

qβ

2
√
n
,Rn +

qβ

2
√
n

]
The null hypothesis was that p = 1/2, and the alternate hypothesis was that p > 1/2.

To compute the p-value, we want to compute the first point at which 1/2 fails

to lie in this interval. Since we’re looking for p > 1/2, we equate the left part of the

interval to 1/2:
1
2

= Rn −
qβ

2
√
n
.

This gives

qβ = 2
√
n
(
Rn −

1
2

)
,

from which we can solve for β (recall that P[N (0,1) > qβ] = β).

7.2 Parametric Hypothesis Testing
Start with a statistical model (Ω, (Pθ)θ∈Θ).
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Example 7.3
Wald’s test

The test can come in any of the following forms:

• form 1: H0 : θ = θ0, H1 : θ > θ0

• form 2: H0 : θ = θ0, H1 : θ < θ0

• form 3: H0 : θ = θ0, H1 : θ , θ0

The test statistic is

W =
θ̂ −θ0√
V̂ar(θ̂)

,

where V̂ar(θ̂) is an estimator of the variance of θ̂. For example, in the kissing exam-

ple, we used
√

(1/2) · (1− 1/2)/n.

Assuming that the test is level-α, our tests are:

• form 1:

Ψ = 1(W > qα).

When W is normally distributed, the probability of a type 1 error is α, at the

right tail of the distribution. For some Wobs, our p-value is

P[N (0,1) >Wobs].

• form 2:

Ψ = 1(W < −qα).

When W is normally distributed, the probability of a type 1 error is α, at the

left tail of the distribution. For some Wobs, our p-value is

P[N (0,1) <Wobs].

• form 3:

Ψ = 1(|W | > qα/2).

When W is normally distributed, the probability of a type 1 error is α/2 +
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α/2 = α. For some Wobs, our p-value is

P[|N (0,1)| > |Wobs|].

8 March 7, 2023

8.1 t-test
In a t-test, we have X1, . . . ,Xn ∼ N (µ1,σ

2) and Y1, . . . ,Ym ∼ N (µ2,σ
2). We assume

that everything is independent. Then,

• H0: µ1 = µ2

• H1: Any of µ1 , µ2, µ1 > µ2, µ2 > µ1

We use estimators µ̂1 =
∑n
i=1Xi/n, and µ̂2 =

∑m
i=1Yi/m. Then, consider

µ̂1 − µ̂2√
Var(µ̂1 − µ̂2)

,

which, like the Wald test, is the quantity that we would like to use as our test

statistic. By our independence assumption, Var(µ̂1 − µ̂2) = Var(µ̂1) + Var(µ̂1) =

σ2/n+ σ2/m. Since we do not explicitly know σ , we need an estimator:

S2
n = σ̂2 =

1
n− 1

n∑
i=1

(Xi −Xn)2.

This is called the sample variance.

Definition 8.1 (Chi-square distribution)
Let Z1 ∼N (0,1). Then, we say that Z2

1 ∼ χ
2
1. More generally, we say that

Z2
1 + . . .+Z2

k ∼ χ
2
k .

Theorem 8.2 (Cochran’s Theorem)

(n− 1)S2
n

σ2 ∼ χ2
n−1.
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Proof. (intuition)

(n− 1)S2
n

σ2 =
n∑
i=1

(
Xi −Xn
σ

)2

=
1
σ2

n∑
i=1

(Xi −µ−Xn +µ)2

=
1
σ2

∑
(Xi −µ)2 − n

σ2 (Xn −µ)2.

The term on the left is the sum of n squared normal distributions, which is χ2
k . The

term on the right subtracts just enough to turn the final distribution into χ2
n−1.

Definition 8.3 (t-distribution)
For Z ∼N (0,1) and S2 ∼ χ2

k ,

Υ =
Z
√
S2/k

∼ tk .

Our test statistic now looks something like this:

µ̂1 − µ̂2√
1
n

1
n−1

∑
(Xi −Xn)2 + 1

m
1

m−1
∑

(Yi −Ym)2
.

Consider the case when n =m. Then, this distribution simplifies:

(µ̂1 − µ̂2)/σ√
1

n(n−1)

√∑(
Xi−Xn
σ

)2
+
∑(

Yi−Y n
σ

)2
=

(µ̂1 − µ̂2)/σ√
1

n(n−1)

√
χ2
n−1 +χ2

n−1

=
(µ̂1 − µ̂2)/(σ

√
2/n)√

χ2
2n−2/(2n− 2)

∼ t2n−2.

Example 8.4
Conduct this test for one sample.

For one sample,
√
n
Xn −µ
Sn

∼ tn−1,
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so we can use this as our test statistic. Say we want to test against the null hypoth-

esis H0 : µ = µ0. Then, we use the test statistic

T =
√
n
Xn −µ0

Sn
.

• H1 : µ , µ0, the T-Test Ψ with level α is given by

Ψ = 1(|T | > qtn−1
α/2 ).

• The other alternative hypothesis tests have the same form as the Wald test

(taken over tn−1).

8.2 Goodness-of-fit Test
Define (Pp)p∈∆K to be the family of all probability distributions on some sample

space E = {ai}i≤K . In other words,

∆k =

(p1, . . . ,pK ) ∈ (0,1)K :
K∑
j=1

pj = 1

 ,
where for any p ∈ ∆K and X ∼ Pp,

Pp[X = ai] = pi .

The setup for the goodness-of-fit test is now as follows. We are givenX1, . . . ,Xn ∼
Pθ for some θ ∈ ∆K . The goal is to test whether θ is equal to some null hypothesis

θ0 ∈ ∆K , i.e.,

• H0 : θ = θ0.

• H1 : θ , θ0.

The pmf has support on E (i.e., the original sample space), and is given by

p(x) =
K∏
j=1

p
1(x=aj )
j .
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Let θ = (p1, . . . ,pK ). The likelihood of the model is given by

Ln(X1, . . . ,Xn;θ) = pN1
1 . . .pNKK ,

where Ni is the number of samples equal to ai . By Jensen’s,∑Ni
n

logpi ≤ log
(∑Ni

n
pi

)
.

Note that the numerator in the right hand expression is N⃗ · p⃗, so it is maximized

when they are parallel, i.e., when Ni/pi is constant. This shows that the MLE for θ

is

θ̂ =
(N1

n
,
N2

n
, . . . ,

NK
n

)
.

(This should intuitively make sense).

Theorem 8.5 (Goodness-of-fit convergence to chi-square)

n
K∑
j=1

(θ̂j −θ0
j )2

θ0
j

d−→
n→∞

χ2
K−1.

This gives us the χ2 test with level α: Ψ = 1(Tn > q
χ2
K−1
α ), where Tn is the test

statistic (the quantity on the left-hand-side), and q
χ2
K−1
α is the α-quantile of χ2

K−1.

The p-value is given by P[χ2
K−1 > T

obs
n ].

9 March 9, 2023

9.1 Empirical CDF

Definition 9.1
The empirical cdf of a sample X1, . . . ,Xn is defined as

Fn(t) =
1
t

n∑
i=1

1(Xi ≤ t) =
#{i = 1, . . . ,n : Xi ≤ t}

n
.

Let Zi = 1(Xi ≤ x). P[Zi = 1] = P[Xi ≤ x] = F(x), so Zi ∼ Bern(F(x)). This implies
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that Fn(t) is an unbiased estimator for F(t):

E[Fn(x)] =
1
n

n∑
i=1

E[1(xi ≤ x)]

=
1
n

(nF(x)) = F(x),

By the strong law of large numbers, Fn(t) is also a consistent estimator:

Fn(t)
a.s.−→
n→∞

F(t).

Also, the central limit theorem holds:

√
n(Fn(x)−F(x))

d−→
n→∞

N (0,F(x)(1−F(x))).

Theorem 9.2 (Glivenko-Cantelli’s Theorem)

sup
t∈R
|Fn(t)−F(t)| a.s.−→

n→∞
0.

This theorem is also known as the Fundamental Theorem of Statistics. The

next theorem is a generalization of the central limit theorem:

Theorem 9.3 (Donsker’s Theorem)
If F is continuous, then

√
nsup
t∈R
|Fn(t)−F(t)| d−→

n→∞
sup

0≤t≤1
|B(t)|,

where B is a brownian bridge on [0,1].

A brownian bridge on [0,1] is a function modelling Brownian motion which

starts and ends at the same point (0).
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9.2 Kolmogorov-Smirnov Test
Let X1, . . . ,Xn be i.i.d. real random variables with unknown cdf F and let F0 be a

continuous cdf. Let

H0 : F = F0

H1 : F , F0

Note that the null hypothesis means that F(x) = F0(x)∀x ∈ R. Let

Tn = sup
x
|Fn(x)−F0(x)|.

By Donsker’s Theorem, given H0,

√
nTn

d−→
n→∞

sup
0≤t≤1

|B(t)| = Z.

Therefore, a level α test is given by

Ψ = 1(Tn > q̃1−α/
√
n),

where q̃1−α is the (1 − α) quantile of Z. The p-value of this test is given by P[Z >

T obsn ]. This test is called the Kolmogorov-Smirnov Test.

9.3 Computing values for KS
Computing the test statistic:

Let X(1), . . . ,X(n) be the reordered sample. Note that F0 is non decreasing, while

Fn is piecewise constant, such that Fn jumps from (i − 1)/n to i/n at X(i). Thus,

Tn = max
i=1,...,n

{∣∣∣∣∣ i − 1
n
−F0(X(i))

∣∣∣∣∣ , ∣∣∣∣∣ in −F0(X(i))
∣∣∣∣∣} .

Computing the quantiles:

Let Ui ∼ F0(Xi). If H0 is true, then U1, . . . ,Un ∼ Unif[0,1]. (Intuitively, since we

are drawing from the same distribution, the cdf probabilities should be distributed

uniformly). In this case, Tn = sup0≤x≤1 |Gn(x) − x|, where Gn is the emprical cdf of

U1, . . . ,Un. Note that Gn does not depend on the distribution of the Xis (as long as
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the null hypothesis is true). Because of this property, we say that Tn is a pivotal

statistic.

To compute the quantiles, first sample k batches of (U1, . . .Un) ∼ Unif[0,1].

Then, compute the test statistics (T̃ 1
n , . . . , T̃

k
n ). Estimate the (1 − α) quantile q(n)

1−α
by taking the sample (1−α) quantile q̂(n,k)

1−α of our test statistics. The way that sam-

ple quantile is defined is by turning our k test statistics into a histogram, and then

taking the (1−α) quantile of that histogram.

9.4 Kolmogorov-Lilliefors Test
To test if X is gaussian, we would need to know the exact parameters of the gaus-

sian in order to perform Kolmogorov-Smirnov (since we assumed we knew F0 pre-

cisely). So, if we want to test if it is gaussian in general, we can instead use the test

statistic

T̂n = sup
t∈R
|Fn(t)−Φµ̂,σ̂2(t)|,

where µ̂ = Xn and σ̂2 = S2
n . This is the Kolmogorov-Lilliefors Test.

9.5 Linear Regression
Given two random variables (X,Y ) we want to compute a regression function to

predict Y from X. Our samples are (Xi ,Yi) i.i.d. from an unkonwn joint distribu-

tion P. Two ways that this distribution could be described:

• a joint pdf h(x,y)

• the marginal density h(x) =
∫
h(x,y)dy, and a conditional density h(y|x) =

h(x,y)/h(x).

So, we may theoretically extract some information about our regression in the

following ways:

• f (x) = E[Y |X = x] =
∫
yh(y|x)dy. The regression function f (x) is often hard to

compute in practice.

• Conditional median: ∫ m

−∞
h(y|x)dy =

1
2
.

• We can also extract conditional quantiles, using the same idea as above.
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In linear regression specifically, we assume E[Y |X = x] = a+ bx. The theoretical

linear regression is given by

(a∗,b∗) = argmin
(a,b)∈R2

E[(Y − a− bX)2].

Setting the partial derivatives equal to 0,

(a∗,b∗) =
(
E[Y ]− b∗E[X],

Cov(X,Y )
Var[X]

)
.

The random variable ε = Y − (a∗ + b∗X) is called noise, and satisfies E[ε] = 0,

Cov(X,ε) = 0.

10 March 16, 2023
Linear regression setup: we desire

argmin
(a,b)

1
n

n∑
i=1

|Yi − axi − b|2.

If we instead use perpendicular distances instead of vertical distance, we would

want to minimize
1
n

∑
|Yi − axi − b|2 sin2θ,

where θ is the angle between the line and the vertical. Since tanθ = a (the slope of

the line), sinθ = a/(
√

1− a2), so the expression becomes

1
n

∑
|Yi − axi − b|2

a2

1− a2 .

10.1 Multivariate Linear Regression
(this is basically the same content covered in the ML notes)

The setup here is that we have n outputs Yi , and n (k+ 1)-dimensional explana-

tory variables Xi = [1,x(1)
i , . . . ,x

(k)
i ]T ∈ R(k+1), which are linearly related. Our goal is

to construct a linear model β between the explanatory variables and the outputs.

Yi = β0 + β1x
(1)
i + β2x

(2)
i + . . .+ βkx

(k)
i + εi = XTi β + ϵi ,
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for all i ∈ {1, . . . ,n}. β0 is the intercept. Like normal linear regression, εi is gaussian

noise.

Definition 10.1
The least squares estimator (LSE) of β is given by

β̂ = argmin
(β∈Rk+1)

k∑
i=1

(Yi −XTi β)2.

The matrix X = [XT1 , . . . ,X
T
n ]T ∈ Rn×(k+1) is called the design matrix. Let Y =

[Y1, . . . ,Yn]T ∈ Rn and ε = [ε1, . . . , εn]T ∈ Rn. Then, we want to find the best-fit β

such that

Y = Xβ + ε.

As before, the LSE is given by

β̂ = argmin
β∈Rn+1

|Y −Xβ|22.

(The subscript 2 notation says that we are in the L2 norm, i.e., normal Euclidean

distance). This has an analytic solution:

β̂ = (XTX)−1XT Y .

Assumptions about this model:

• The model is homoscedastic, i.e., all εi are i.i.d.

• Noise is gaussian, i.e., εi ∼N (0,σ2), for some σ2.

Other important things to know:

• β̂ is normally distributed: β̂ ∼N (β,σ2(XTX)−1)

• E[|Y −Xβ̂|2] = σ2(n− k − 1)

• Unbiased estimator of σ2: σ̂2 =
|Y −Xβ|22
n− k − 1

.

•
|Y −Xβ̂|22

σ2 ∼ χ2
n−k−1. This is true by Cochran’s Theorem, since |Y − Xβ̂|22 =

σ̂2(n− k − 1).
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10.2 Significance Testing
To test whether the jth explanatory variable is significant in the linear regression,

we use

H0 : βj = 0

H1 : βj , 0.

Then, a test with non-asymptotic level α:

Ψ = 1

 β̂j√
σ̂2γj

> q
(tn−k−1)
α/2

 ,
where γj is the jth diagonal coefficient of (XTX)−1.

10.3 Non-parametric Regression
Non-parametric regression is a regression model that does not make a parametric

assumption about f (x) = E[Yi |Xi = x], x ∈ R(k+1). Examples of parametric assump-

tions:

• f (x) = a+ bx (linear regression)

• f (x) = ea+bx

In parametric cases, we can use LSE and MSE theory to estimate the function f .

Example 10.2
Non-parametric regression: take local averages.

One idea of a non-parametric regression model is to assume that f is very

smooth, and take local averages. Let h > 0, and Ix = {i ∈ {1, . . . ,n} : |Xi − x| < h}.
Then, we can approximate f with

f̂n,h(x) =


1
|Ix|

∑
i∈Ix

Yi Ix , ∅

0 else.
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11.1 Nonparametric Regression
Recap from last time: non-parametric regression is when we do not make any para-

metric assumptions on f . For example, a parametric assumption on f would be to

assume that f (x) ∈ {a+ bx,a+ bx+ cx2, ea+bx, ...}.
One non-parametric regressor is to take local averages. This assumes that f is

“smooth”, and can thus be well approximated by some piecewise constant function,

e.g., f (t) ≈ f (x) for t close enough to x.

Let h > 0 be the window size or bandwidth. Then define

Ix = {i = 1,2, . . . ,n : |Xi − x| < h}.

Our regressor is then given by

f̂n,h(x) =


1
|Ix|

∑
i∈Ix

Yi Ix , ∅

0 else.

For this to be a good regressor, we need to choose an appropriate bandwidth. As

h→ 0, the model becomes overfit, and as h→∞, the model becomes underfit (just

a straight horizontal line).

Example 11.1
We will show one way to choose a “smart” value for h. Let xi = i/n for i ∈
{0}∪[n]. Let Yi = f (xi)+εi for standard normally distributed εi . Suppose that

we know |f ′(x)| ≤ L for x ∈ [0,1].

Construct the non-parametric estimator f̂ (xi) = (
∑
j∈Ii Yj )/ |Ii |, where Ii = {j :

|j − i| ≤ k}.

Claim 11.2 (Variance)

Var[f̂ (xi)] ≤
1
k
.
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Proof. Var[Yi] = Var[εi] = 1. Therefore, Var[f̂ (xi)] =
∑
j∈Ii Var[Yj ]/ |Ii |2 ≤ 1/k, since

|Ii | ≥ k.

Claim 11.3 (Bias)

|E[f̂ (xi)]−E[f (xi)]| ≤
Lk
n
.

Proof. Since |f ′(xi)| ≤ L, the farthest neighboring point (i.e., distance k/n away) dif-

fers from f (xi) by at most Lk/n. Therefore, the average distance from neighboring

points differs from f (xi) is also bounded above by Lk/n.

Claim 11.4 (Quadratic Risk)
Quadratic risk is the sum of variance and bias:

E[(f̂ (xi)− f (xi))
2] ≤ L

2k2

n2 +
1
k
.

So, we can minimize the quadratic risk by choosing k = (n/L)2/3.

11.2 Exponential Family
The family of exponential distributions Pη has density function

h(x)exp(ηT t(x)− a(η)).

• η and t are called sufficient statistics. Note that η is a vector of inputs to the

distribution, hence the transpose

• h is called the “underlying measure”

a(η) is chosen so that we get a probability distribution:

a(η) = log
∫
h(x)exp(ηT t(x))dx.

Example 11.5
The normal distribution is an exponential family.

39



Andrew Liu March 23, 2023

Probability density can be expressed in the following way:

Pµ,σ2(x) =
1

√
2πσ

exp
(
−

(x −µ)2

2σ2

)
= exp

(
µ

σ2 x −
1

2σ2 x
2 −

µ2

2σ2 − logσ − 0.5log(2π)
)
.

• t(x) = (x,x2)

• η = (µ/σ2,−1/(2σ2))

• a(η) = µ2 + logσ + 0.5log(2π) = −η2
1 /4η2 − 0.5log(−2η2) + 0.5log(2π).

• h(x) = 1

Claim 11.6

• EPη [t(x)] = ∇a(η).

• Cov[t(x)] = ∇2a(η).

12 March 23, 2023

12.1 Generalized Linear Models
This is a special case of the exponential distributions introduced last lecture:

Definition 12.1 (One parameter canonical exponential family)

fθ(y) = exp
(
yθ − b(θ)

φ
+ c(y,φ)

)
.

It is possible to show that E[Y /φ] = b′(θ)/φ and Var[Y /φ] = b′′(θ)/φ, which

gives µ = E[Y ] = b′(θ) and Var[Y ] = φb′′(θ). Here, φ acts as a scale or dispersion

parameter, since changing it affects the variance but not the mean of the distribu-

tion.
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Definition 12.2 (Generalized Linear Model)
A GLM consists of

• A conditional on X, Y |X, which is a exponential family.

• A link g:

µ(X) = E[Y |X] = g−1(XT β).

13 April 4, 2023

13.1 Principal Component Analysis
The setup for PCA is that we have some high dimensional data that can be clustered

approximately into clouds. We want to project the data into a lower dimension

such that the variation between the clouds is still captured. Lower dimensional

data saves computational power; we want to sacrifice as little of the depth of the

data as possible by doing reducing its dimensionality.

X1, . . . ,Xn ∈ Rd . X = [XT1 , . . . ,X
T
n ]T ∈ Rn×d . The matrix

S =
1
n

n∑
i=1

(Xi −X)(Xi −X)T

is the sample covariance matrix.

– unclear: the professor says that the usage of 1/n instead of 1/(n−1) for sample

covariance / variance is specific to PCA –

Let U ∈ Rd . We want UTX1,U
TX2, . . . ,U

TXn = Y1, . . . ,Yn to have maximal vari-

ation. The sample variance of Y1, . . . ,Yn is

1
n

n∑
i=1

(Yi −Y )2.
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Claim 13.1
The sample variance

1
n

n∑
i=1

(Yi −Y )2 =UT SU.

Proof. We have Yi −Y =UTXi −UTXn =UT (Xi −Xn). Therefore,

(Yi −Y )2 = (Yi −Y ) · (Yi −Y ) =UT (Xi −Xn)(Xi −Xn)TU,

since (Yi −Y ) is a scalar and equal to its own transpose. Thus,

1
n

n∑
i=1

(Yi −Y )2 =UT
(1
n

∑
(Xi −Xn)(Xi −Xn)T

)
U =UT SU.

Definition 13.2 (Positive Definite Matrices)
If A is a symmetric matrix, A is positive definite if all eigenvalues of A are

positive. A is positive semidefinite if all eigenvalues of A are nonnegative.

Alternatively, A is positive definite if UTAU > 0 for all U , 0, and A is posi-

tive semidefinite if UTAU ≥ 0 for all U , 0.

Claim 13.3
S is positive semidefinite.

Proof. UT (Xi −Xn)(Xi −Xn)TU = (UT (Xi −Xn))2 ≥ 0.

Fix U0 and define Ur = rU0. Then, UT
r SUr = r2UT

0 SU0.

• For any U0, UT
0 SU0 ≥ 0. If UT

0 SU , 0, then we can increase r to make the

variance grow unbounded.

The first principle component is u1 = argmax|U |≤1U
T SU . The second princi-

ple component is u2 = argmax|U |≤1,U⊥u1
UT SU . We can continue defining the nth

principle component following this general pattern. These vectors represent the

vectors among which the variation in the data is maximized, when the data is pro-

jected along these vectors.
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Theorem 13.4
By the spectral decomposition theorem, any real symmetric matrix A has

spectral decomposition

A = PDP T ,

where P is an orthonormal matrix containing the eigenvectors of A, and D is

a diagonal matrix containing the corresponding eigenvalues.

Let λ1 ≥ λ2 ≥ . . . ≥ λd be the eigenvalues of A. Using the spectral decomposi-

tion of A, it is possible to show that the first principle component is given by the

eigenvector corresponding to λ1. Similarly, the second principle component is the

second largest eigenvector subject to the constraint that it is orthogonal to the first

eigenspace. And so on. (See 701 notes for more detail)

14 April 11, 2023

14.1 Classification
A set of images encoded as vectors X = (x1, . . . ,xd)T ∈ Rd . Given an input set of

data {(X1,Cat), (X2,Dog), . . .}, the goal is to learn from this data and come up with

a classification rule.

Definition 14.1
The classification rule is a function h such that h(x) ∈ {0,1}.

Error/risk function for a classifier:

L(h) = E[1(h(x) , Y )] = P[h(x) , Y ].

The empirical risk function is

L̂(h) =
1
n

n∑
i=1

1(h(xi) , Yi).
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Theorem 14.2
Define h∗(X) = 1(r(X) > 1/2) where r(X) = P[Y = 1|X = x] = E[Y |X = x]. The

Bayes classifier h∗ minimizes the true error among all classifiers, i.e.,

P(h∗(X) , y) ≤ P(h(X) , y) ∀h.

Proof. Since P[h(X) , y] = EX[E[(h(X) , y)|X = x]], it suffices to show that

P[h∗(X) , y|X = x]−P[h(X) , y|X = x] ≤ 0.

Fix some hypothesis h. If h∗(x) = h(x), then P[h∗(X) , y|X = x] = P[h(X) , y|X =

x], so the result holds.

So, assume h∗(x) , h(x). Given that h(x) , y, we know that h∗(x) = y, since

y ∈ {0,1}, so P[h(X) , y|X = x] = P[h∗(X) = y|X = x], and it thus suffices to show that

P[h∗(X) , y|X = x] ≤ P[h∗(X) = y|X = x].

• If r(x) ≤ 1/2, then h∗(x) = 0, so we want to show P[Y = 1|X = x] ≤ P[Y = 0|X =

x] ⇐⇒ r(x) ≤ 1− r(x) ⇐⇒ r(x) ≤ 1/2, which we assumed to be true.

• If r(x) > 1/2, then h∗(x) = 1, so we want P[Y = 0|X = x] ≤ P[Y = 1|X = x] ⇐⇒
1− r(x) ≤ r(x) ⇐⇒ r(x) ≥ 1/2, which we assumed to be true.

How do we compute r(x) = P[Y = 1|X = x]? Given:

• Y ∈ {0,1}, Y ∈ Bern(π0)

• fX(X = x|Y = 1) = f1(x) is the conditional density of X given Y = 1

• fX(X = x|Y = 0) = f0(x) is the conditional density of X given Y = 0.

Then, by Bayes’ formula,

r(x) =
π0f1(x)

π0f1(x) + (1−π0)f0(x)
.
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Given data, we need a way to estimate π0, f1, f0, in order to compute r(x) in this

way. Estimator for π̂0:

π̂0 =
1
n

n∑
i=1

1(Yi = 1).

We can estimate the density functions with Kernel Density Estimation:

f̂ (x) =
1
nh

n∑
i=1

K
(xi − x

h

)
,

where h can be thought of some sort of bandwidth, and K(x) = e−x
2/2/
√

2π is Gaus-

sian.

15 April 13, 2023

15.1 Nearest Neighbors Classifier
From last lecture,

r(x) = P[Y = 1|X = x] =
π0f1(x)

π0f1(x) + (1−π0)f0(x)
,

where Yi ∼ Bern(π0), and f1 and f0 are the conditional densities of x given Y = 1

and Y = 0, respectively.

The most accurate hypothesis is the Bayes classifier h(x) = 1(r(x) > 1/2). If we

assume π0 = 1/2, this rearranges to h(x) = 1(f1(x) > f0(x)).

Definition 15.1
In a nearest neighbor classifier, suppose the data xi is d-dimensional. Then

we use the following kernel density estimator:

f̂ (x) =
1
nhd

n∑
i=1

K

(
|xi − x|
h

)
,

where K(x) = 1(|x| ≤ 1)/2. Then, f̂1(x) = f̂ (x)1(Yi = 1) and f̂0(x) = f̂ (x)1(Yi =

0).

Recall that last time we used a gaussian kernel, which leads to a different esti-
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mator. The nearest neighbors classifier predicts y = 1 when f̂1(x) > f̂0(x).

If we did not want to naively assume that π0 = 1/2, similar logic can be applied

with the estimator π̂0 =
∑n
i=11(Yi = 1)/n:

h(x) = 1(r(x) > 1/2) = 1

(
π̂0f1(x)

π̂0f1(x) + (1− π̂0)f0(x)
>

1
2

)
= 1(π̂0f̂1(x) > (1− π̂0)f̂0(x)).

(But this is generally how nearest neighbor is implemented).

15.2 Determinant Analysis
Let Σi be the covariance matrix for all data classified as i ∈ {0,1}. Then, we can use

a kernel density estimator with gaussian kernel:

fi(x) =
1

(2πd det(Σi))1/2
exp

− (x −µi)TΣ−1
i (x −µi)

2

 ,
where we use the fact that UT SU gives the variance of data point U given covari-

ance matrix S (this was proven two lectures ago).

Here, the threshold for classification f1(x) > f0(x) reduces to

(x −µ1)TΣ−1(x −µ1) ≤ (x −µ0)TΣ−1(x −µ0),

which assumes that Σ1 = Σ0 = Σ.

Note explain this that

xT (Σ−1(µ1 −µ0)) = µT1 Σ
−1µ1 −µT0 Σ

−1µ0.

If µ0, µ1, Σ are not known, we may use the estimators

µ̂i =

∑n
j=1Xj1(Yj = i)∑n
j=11(Yj = i)

,

and

Σ̂ =
1
n

 n∑
i=1

1(Yi = 1)(Xi − µ̂1)(Xi − µ̂1)T +
n∑
i=1

1(Yi = 0)(Xi − µ̂0)(Xi − µ̂0)T
 .
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16.1 Bayesian vs Frequentist statistics
Consider the kissing example. Suppose R1, . . . ,Rn ∼ Bern(p). We would like to test

H0 : p = 1/2, H1 : p , 1/2.

Example 16.1
Frequentist analysis.

In frequentist statistics, we assume that parameter p is a true constant, and use

estimator p̂ = E[Ri] to estimate the value of this parameter. All of the tools we have

discussed so far (CI, Wald test, etc.) would be relevant to conduct this test.

Example 16.2
Bayesian analysis.

We take p to be a random variable with some prior distribution. In this case,

say p ∼ Beta(a,b), where the beta distribution is defined with pdf

f(a,b)(x) =


xa−1(1−x)b−1

beta(a,b) x ∈ [0,1]

0 otherwise.
,

and beta(a,b) = Γ (a)Γ (b)/Γ (a+ b). Then, we say that R1|p, . . . ,Rn|p ∼ Bern(p).

The conditional density is

f (R1 = r1, . . . ,Rn = rn|p) = p
∑n
i=1 ri (1− p)n−

∑n
i=1 ri .

To find the marginal distribution of Ri , we integrate out p:

f (R1 = r1, . . . ,Rn = rn) =
∫ 1

0
p
∑n
i=1 ri (1− p)n−

∑n
i=1 ri

pa−1(1− p)b−1

beta(a,b)
dp.

Note that this value does not depend on the value of p. It represents the general

probability that we observed the given data over all possible values of p.
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For any single data point, f (Ri = ri |p) = pri (1− p)1−ri , so E[Ri |p] = p, and by the

towering property of conditional expectation,

E[Ri] = E[E[Ri |p]] = E[p] =
∫ 1

0
p
pa−1(1− p)b−1

beta(a,b)
dp.

The posterior distribution is the conditional distribution of p given R1, . . . ,Rn:

f (p|R1 = r1, . . . ,Rn = rn) =
f (P = p)f (R1 = r1, . . . ,Rn = r |p)

f (R1 = r1, . . . ,Rn = rn)

=
p
∑n
i=1 ri (1− p)n−

∑n
i=1 ri p

a−1(1−p)b−1

beta(a,b)∫ 1
0 p

∑n
i=1 ri (1− p)n−

∑n
i=1 ri p

a−1(1−p)b−1

beta(a,b) dp
.

Claim 16.3
f (p|R1 = r1, . . . ,Rn = rn) is the same density as Beta(a+

∑n
i=1 ri ,b+n−

∑n
i=1 ri).

Given p ∼ Beta(a,b), it can be shown that E[p] = a/(a+ b). By the above claim,

E[p|R1 = r, . . . ,Rn = r] =
a+

∑n
i=1 ri

b+n−
∑n
i=1 ri + a+

∑n
i=1 ri

=
a/n+ 1/n

∑n
i=1 ri

a/n+ b/n+ 1
.

As n→∞, E[p|R1 = r1, . . . ,Rn = rn] approaches E[Ri].

16.2 Choices of Priors
• Non-informative priors give no preference to any particular point. For ex-

ample, if a = b = 1, then Beta(1,1) = Unif[0,1].

• Jeffrey’s Prior π(θ) ∝
√
I(θ).

48



Andrew Liu April 25, 2023

17 April 25, 2023

17.1 Bootstrapping

Definition 17.1
Bootstrapping is a simulation based method to assess the variability of any

estimator.

Consider some

θ̂
(1)
n , θ̂

(2)
n , . . . , θ̂

(k)
n ∼ P .

A reasonable estimator for the mean: θ̂∗n =
∑k
i=1 θ̂

(i)
n /k. By the strong law of large

numbers, this is an unbiased estimator, i.e., it converges almost surely to E[θ̂n].

A reasonable estimator for variance: vboot =
∑k
i=1(θ̂(i)

n − θ̂∗n)2. By the strong law of

large numbers, this also converges to Var[θ̂n].

Main idea: split the data into some number of blocks, and then compute effec-

tively i.i.d. estimators:

X(1) = {X(1)
1 , . . . ,X

(1)
n } → θ̂

(1)
n

X(2) = {X(2)
1 , . . . ,X

(2)
n } → θ̂

(2)
n

...

To construct confidence intervals:

Example 17.2
Constructing normal confidence intervals from bootstrapped samples.

Given θ̂ asymptotically normal, i.e.,
√
n(θ̂ −θn)

d−→
n→∞

N (0,V (θ̂n)), then

C.I.boot =
[
θ̂n −Zα/2

√
vboot , θ̂n +Zα/2

√
vboot

]
.

Example 17.3
Constructing pivotal intervals from bootstrapped samples.
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This method is generally more popular than the first method. The goal is to

find t such that

P[−t ≤ θ̂ −θ ≤ t] ≈ 1−α,

so that [θ̂ − t, θ̂ + t] is a (1−α)-level confidence interval.

We can compute some estimator for this value tα s.t.

1
B

B∑
i=1

1(−tα ≤ θ̂n − θ̂(i) ≤ tα) ≈ 1−α.

Then, our interval is

C.I.boot = [θ̂n − tα , θ̂ + tα].

Example 17.4
Histogram based confidence intervals.

Compute θ̂(1)
n , . . . , θ̂

(B)
n . Then, construct empirical quantiles by plotting these

values in a histogram, and take

C.I.boot = [q∗α/2,q
∗
1−α/2].

18 April 27
Review session.

18.1 Exponential Distributions
Pη(x) = h(x)exp(ηT t(x)− a(η))dx,

where a(η) is a normalizing factor so that
∫
Pη(x)dx = 1.

Example 18.1
Show that ∂a/(∂ηi) = E[ti(x)].
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Given

1 =
∫
h(x)exp(ηT t(x)− a(η))dx,

we know

exp(a(η)) =
∫
h(x)exp(η1t1(x) + η2t2(x) + . . .+ ηntn(x))dx.

Differentiate both sides with respect to ηi :

∂ai/∂ηi · (exp(a(η))) =
∫
ti(x)h(x)exp(ηT t(x))dx,

which implies

∂ai/∂ηi =
∫
ti(x)Pη(x)dx = E[ti(x)].

Theorem 18.2
More generally, ∇a(η) = E[t(x)] and ∇2a(η) = Cov(t(x)).

18.2 Bayesian Statistics
Let X1, . . . ,Xn ∼ Exp(λ).

• classical: make an asymptotic statement about λ, create confidence intervals,

etc.

• Bayesian: assume λ has a distribution, use the data to refine the distribution.

Bayesian statistics starts with a prior π(λ), which is the initial distribution that

we guess that λ has. The model creates a posterior π(λ|X1, . . . ,Xn), which is the

updated distribution after considering the data.

Bayes rule: posterior is proportional to the prior times the likelihood of the

data:

π(λ|X1, . . . ,Xn) ∝ π(λ) ·P(X1, . . . ,Xn|λ).

Estimators:

• MAP (maximum a posterior): the value of λ maximizing the posterior

• Bayes: the mean of π(λ|X1, . . . ,Xn).
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Note: given a uniform prior, maximizing the posterior is the same as maximiz-

ing the likelihood, so the MAP is the same as the MLE.

Example 18.3
Given data X1, . . . ,Xn ∼ Pois(λ) and prior λ ∼ Unif[0,10], compute the MAP

and Bayes estimators.

We know

π(λ|X1, . . . ,Xn) ∝ π(λ)P(X1, . . . ,Xn|λ).

The density of Pois(λ) is given by fλ(x) = λxe−λ/x!, so

π(λ|X1, . . . ,Xn) = c · 1
10
1(λ ∈ [0,10])λ

∑
Xie−λn,

for some normalizing constant c. From here, asssume X1, . . . ,Xn = 0 to save some

computation. First, we compute the constant:

1 =
∫ 10

0

1
10
ce−λndλ =

c(1− e−10n)
10n

=⇒ c =
10n

1− e−10n ,

which gives us the posterior:

π(λ|X1, . . . ,Xn) =
n

1− e−10n e
−nλ

1(λ ∈ [0,10]).

Now, the Bayes estimator is given by

λ̂ = E[π(λ|X1, . . . ,Xn)] =
∫ 10

0

nλ

1− e−10n e
−nλdλ.

To find the MAP estimator, differentiate (we no longer assume the values of Xi
since this is an easier computation):

∂
∂λ

( 1
10
λ
∑
Xie−nx

)
= 0

=⇒ λ =
(∑

Xi
)
/n.

With consideration to the constraint on λ, this gives us the MAP estimator λ̂ =

min((
∑
Xi)/n,10).
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Example 18.4
Compute Jeffrey’s prior for Pois(λ) andN (0,θ).

• Pois(λ): For a poisson distribution,

fλ(x) =
λx

x!
e−λ,

so the total log likelihood is

LL(Xi |λ) =
∑

(Xi logλ− logx!−λ).

Differentiating, we get

∂LL(Xi |λ)
∂λ

=
∑(Xi

λ
− 1

)
and

∂2LL(Xi |λ)
∂λ2 =

∑
− x
λ2 .

Thus the Fisher information is

I(λ) = −Eλ
[∑ 1

2λ2 −
3x2

2λ3

]
= − n

2λ2 +
3n

2λ3 ·λ =
n

λ2 ,

using the fact that E[x] = λ. Finally, Jeffreys prior is

π(θ) ∝ I(θ)1/2 ∝ θ−1.

• N (0,θ): For a normal distribution with mean 0 and variance θ,

fθ(x) =
1

√
2πθ

exp
(
−x2

2θ

)
.

So, the total log likelihood is

LL(Xi |θ) =
n∑
i=1

− log
√

2π − 1
2

logθ −
X2
i

2θ

 .
Differentiating,

∂LL
∂θ

=
n∑
i=1

− 1
2θ

+
X2
i

2θ2 and
∂2LL

∂θ2 =
n∑
i=1

1
2θ2 −

3X2
i

2θ3 .
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Thus, the fisher information is

I(θ) = −Eθ

 n∑
i=1

1
2θ2 −

3X2
i

2θ3

 = − n

2θ2 +
3n

2θ3θ =
n

θ2 ,

where we have used the fact that E[X2] = Var[X] = θ, since the mean is fixed

at zero. Finally, Jeffreys prior is

π(θ) ∝ I(θ)1/2 ∝ θ−1.
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