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1 September 7, 2023

1.1 Syllabus
Prerequisites:

• know probability, random variables, expectation, distribution function, etc.

don’t need to know about measure theory.

• calculus and lin alg. vectors, matrices, eigenvectors, eigenvalues

Grading:

• 6 problem sets (40%). lowest pset is dropped. since the lowest pset is dropped,

late homework won’t be accepted

• 2 midterms (60%)

1.2 General Outline
Stochastic Processes are a family of random variables indexed by time. Rough

outline of things that we’ll cover in this class:

1. Markov Chain fundamentals

2. Countable state space markov chains (MC)

3. Martingales, models of fair betting systems

4. Continuous time/space MC

1.3 Intro
Assume everything is discrete time for now.

Definition 1.1
A stochastic process is a sequence of r.v.s X1,X1, . . . jointly defined.

Think of the indices 1,2, . . . as time.
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Definition 1.2
A Markov Chain is a stochastic process {Xi} taking values in X s.t.

P[Xi = zi |X0 = z0, . . . ,Xi−1 = zi−1] = P[Xi = zi |Xi−1 = zi−1].

We call X the state space.

Intuitively, the probability of any given state only relies on each state at the

directly previous timestep. This is called the Markov property.

Definition 1.3
We say Xi is time homogenous if P[Xi = zi |Xi−1 = zi−1] is independent of i.

In this course, we assume that all markov chains are time homogenous.

Here are some common examples of Markov Chains:

Example 1.4 (Gambler’s Ruin)
Let X = N, and Xi be the amount of money a gambler has at time i, if they

bet $1 during each timestep.

For example, if X0 = $5, then a valid sequence could be 5,6,7,6,5,4, . . ..

Example 1.5 (Random Walk)
Let G = (V ,E). We move to a neighbor uniformly at random.

Definition 1.6
Let P i(x,y) = P[Xi = y|X0 = x].

This is the probability of moving from x to y in i-steps starting from any point

in time. The collection of probabilities P 1(x,y) = P (x,y) is called the transition

probabilities.

Lemma 1.7
P i(x,y) is equal to the (x,y)th entry of P i , where P is a matrix of the transition

probabilities.
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Proof. Proceed by induction on i ≥ 1.

Base case i = 1 is clear.

Now, using inductive hypothesis and markov property,

P[Xi+1 = y|X0 = x] =
∑
z

P[Xi+1 = y|X0 = x,Xi = z] ·P[Xi = z|X0 = x]

=
∑
z

P (z,y)P i(x,z) = P i+1(x,y).

Lemma 1.8
Let P be a markov chain and µ be a distribution on X , viewed as a row vector.

Then

(µP i)x = P[Xi = x|X0 ∼ µ].

The notation X0 ∼ µ means that the initial state of the Markov chain is randomly

drawn from µ.

1.4 Visual Representation
Draw a directed graph G = (X ,E) where (x,y) ∈ E if P (x,y) > 0, and label (x,y) with

P (x,y).

Example 1.9 (Gambler’s ruin)

0 1 2 . . .1
1/2

1/2

1/2

1.5 More definitions
First goal: understand long-term behavior of markov chains.
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Definition 1.10
Let P be a MC on X . We say x and y communicate and write x ∼ y if ∃i, j > 0

s.t. P i(x,y) > 0 and P j(y,x) > 0, or x = y.

Lemma 1.11 (∼ is an equivalence relation)

1. x ∼ x

2. x ∼ y =⇒ y ∼ x

3. x ∼ y,y ∼ z =⇒ x ∼ z

This implies a partition X = X1 ∪ . . .∪Xk , where x ∼ y iff x,y ∈ Xi for some i.

Definition 1.12
We call these Xi communicating classes. Moreover, we say a class A is closed

if P (x,y) = 0∀x ∈ A,y < A.

Definition 1.13
We say a markov chain is irreducible if it has exactly one closed class.

Proposition 1.14
Every finite markov chain has a closed class.

Proof. Let A,B be communicating classes. Write A→ B if ∃x ∈ A,y ∈ B s.t. P (x,y) >

0.

If A → B, and A , B, then B ↛ A. Suppose there were no closed class. Then

∃ sequence A1 , A2 , . . . s.t. A1 → A2 → . . ., since we can keep picking elements

outside of non-closed classes. Given a finite number of elements, there is some i, j

such that Ai = Aj , contradiction.

Idea: closed classes are like irreducible Markov Chains.
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2 September 12, 2023

2.1 Last lecture review
A time-homogeneous MC is a sequence of r.v.s X1,X2, . . . taking values in X , s.t.

P[Xi+1 = zi+1|X0 = z0, . . . ,Xi = zi] = P[X1 = zi+1|X0 = zi].

We also introduced the notation

P i(x,y) = P[Xi = y|X0 = x],

and said x ∼ y (i.e., x communicates with y) if ∃i, j > 0 s.t.

P i(x,y) > 0 and P i(y,x) > 0, or x = y.

Since ∼ is an equivalence relation, this implies a partition

X = X1 ∪X2 ∪ . . . ,∪Xu

s.t. x ∼ y if and only if x,y ∈ Xi for some i. We call each partite set a communicating

class.

We say that P is irreducible if there is exactly one class, i.e., x ∼ y∀x,y ∈ X . We

also say that a class A ⊆ X is closed if ∀x ∈ A, y < A, P (x,y) = 0.

2.2 Periodicity

Definition 2.1 (Periodicity)
Let P be a markov chain on X . Let the period of x be

per(x) = gcd{i|P i(x,x) > 0}.

Proposition 2.2
x ∼ y =⇒ per(x) = per(y).

Proof. If x = y, then we’re done, so consider x , y. Then, ∃i, j > 0 s.t. P i(x,y) > 0
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and P i(y,x) > 0.

Now, if P k(x,x) > 0, then P k+i+j(y,y) > 0, since we can travel from y to x to x

to y with non-zero probability. Also, P i+j(y,y) > 0. Therefore, per(y)|gcd(k + i +

j, i + j) =⇒ per(y)|k. Since this is true for all k for which P k(x,x) > 0, per(y)|per(x).

Since x and y are interchangeable, per(x)|per(y), thus per(x) = per(y).

Definition 2.3
If P is irreducible, it’s period is per(x) for any x. We say that P is aperiodic if

its period is 1.

Proposition 2.4
Let P be an irreducible MC with period k; then there exists a partition

X = C1 ∪ . . .∪Ck

s.t. P (x,y) > 0 only if x ∈ Ci , y ∈ Ci+1 for some i.

Proof. In the hw. For an example, consider P = Ck with transition probabilities all

1.

2.3 Stationary Distribution

Definition 2.5
P MC on X . A distribution µ on X is stationary if µP = µ.

This is equivalent to:

P[Xi = x|Xi ∼ µ] = µ(x),

which is also equivalent to ∑
x

µ(x)P (x,y) = µ(y)∀y.

In general, they may or may not exist, and they may not be unique. For example, a

random walk on Z has no stationary distribution. Also, MCs with multiple classes

may have multiple stationary distributions.

Notation: stationary distributions will always be π.
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Theorem 2.6
If |X | <∞, ∃ a stationary distribution.

We can easily show that there exists a solution to µP = µ. In particular, note

that [1,1, . . . ,1]T is a right eigenvector for P . Since left and right eigenvectors come

in pairs, there exists left eigenvector µ that satisfies µP = µ.

The hard part of the proof is to show that there exists a solution that repre-

sents an actual distribution, i.e., nonnegative values summing to 1. First, some

definitions:

Definition 2.7
Define the return time, or hitting time, as

τ+
x = min{i > 0|Xi = x}.

If we never hit x, τ+
x =∞.

Proposition 2.8
If P is irreducible and |X | <∞, then E[τ+

x ] <∞.

Proof. Since P irreducible, |X | < ∞, there exists u ∈ N, ε > 0, s.t. ∀x,y ∈ X , ∃i ≤ u

s.t. P i(x,y) > ε.

Then, no matter what Xi is, there is an ε chance to hit x between Xj and Xj+i .

So,

P[τ+
x > kr] ≤ (1− ε)P[τ+

x > k(r − 1)] ≤ (1− ε)r .

Thus,

E[τ+
x ] =

∑
i≥0

P[τ+
x > i]

≤
∑
r>0

kP[τ+
x > kr] ≤

∑
r>0

(1− ε)kk <∞.

Now, proof of the main theorem:
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Proof. Pick z ∈ X in a closed class. Let π(x) = E[Nx]/E[τ+
x ], where Nx is the number

of visits to x until we return to z. It turns out that this is a stationary distribution.

First we show that π is a distribution. Clearly, π(x) ≥ 0∀x ∈ X . Also,
∑

xNx = τ+
z ,

which implies that
∑

xπ(x) = 1, so π is a distribution.

Now, we show πP = π. It suffices to show∑
x

E[Nx]P (x,y) = E[Ny]∀y.

We know Nx =
∑

i≥01(Xi = x,τ+
z > i), which implies∑

x

E[Nx]P (x,y) =
∑
x

∑
i≥0

P (x,y)P[Xi = x,τ+
z > i]

=
∑
x

∑
i≥0

P(Xi+1 = y|Xi = x,τ+
z > i) ·P(Xi = x,τ+

z > i).

We can make this substitution since {τ+
z > i} = {X1 , z, . . . ,Xi , z}, which only

depends on events in the past; by the Markov property, conditioning on past events

does not affect the current probability. Now, by the law of total probability, our sum

simplifies ∑
i≥0

P[Xi+1 = y|τ+
z ≥ i + 1]

= E[Ny]−P[X0 = y,τ+
z > 0] +

∞∑
i=1

P[Xi = y,τ+
z = i]

= E[Ny]−P[X0 = y,τ+
z > 0] +P(Xτ+

z
= y).

If y = z, the two right hand terms are equal to 1; otherwise, they are both equal to

0. Either way, the sum collapses to E[Ny], so we are done.

Theorem 2.9
If P is irreducible, |X | <∞, there is at most one stationary distribution.

This is still true without assuming |X | <∞, but the proof is more difficult with-

out this assumption, so we assume it to be true here.

Proof. Let π1,π2 be stationary. By HW, π1(x),π2(x) > 0∀x. Choose z s.t. π1(z)/π2(z)

is minimized, which is well defined since we have a finite list of positive probabil-
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ities.

π1(z)
π2(z)

=

∑
x
π1(x)
π2(x)π2(x)P (x,z)∑
xπ2(x)P (x,z)

.

Note that the right hand side is a weighted average of π1(x)/π2(x) over all x. There-

fore, if π1(x)/π2(x) > π1(z)/π2(z) for any x with P (x,z) > 0, we get a contradic-

tion, since the RHS would necessary exceed the LHS. This implies π1(x)/π2(x) =

π1(z)/π2(z)∀x with P (x,z) > 0. We can replace P with P i to force this to hold for all

x, implying that π1/π2 is a constant. Since their elements must both sum to 1, this

means that they’re the same distribution, so we’re done.

Corollary 2.10
The unique stationary distribution for irreducible P , |X | < ∞ is given by

π(x) = 1/E[τ+
x ].

Proof. We showed that π(x) = E[Nx]/E[τ+
x ] works for any z ∈ χ. Since we can choose

z = x, this gives π(x) = 1/E[τ+
x ].

3 September 14, 2023

3.1 Last lecture review
Defined per(x) = gcd{i : P i(x,x) > 0}. If x ∼ y, then per(x) = per(y). Period of

irreducible P is the period of any x ∈ X .

We say π is stationary if πP = π, which is the same as saying∑
x

π(x)P (x,y) = π(y),

which is the same as saying X0 ∼ π =⇒ X1 ∼ π. Here, ∼ means “distributed as”,

and not communication (slightly confusing).

Theorem 3.1
If X finite, there exists stationary distribution π.
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Theorem 3.2
If P irreducible, |X | <∞, π is unique.

Corollary 3.3

π(x) =
1

E[τ+
x ]

.

3.2 Convergence Theorem

Definition 3.4
P is reversible wrt µ if

µ(x)P (x,y) = µ(y)P (y,x) ∀x,y ∈ X .

Proposition 3.5
If P is reversible wrt µ, then µP = µ, i.e., µ is stationary.

Warning: the converse of this proposition is false.

Example 3.6 (Birth and death chain)
X = {0,1, . . . ,n}. P (x,y) = px if y = x+ 1, P (x,y) = qx if y = x − 1, or rx if y = x.

Assuming all probabilities positive, this is an irreducible markov chain. Let’s

try to find π such that P is reversible wrt π.

Consider µ(0)P (0, y) = µ(y)P (y,0). If y = 0, both sides are the same; if y > 1, both

sides are 0. So, we need µ(0)P (0,1) = µ(y)P (1,0) =⇒ µ(0)p0 = µ(1)q1. In general,

µ(i)pi = µ(i + 1)qi+1, which implies that

µ(x) = µ(x − 1)
px−1

qx
= µ(0)

x∏
i=1

pi−1

qi
.

So, the unique stationary distribution is

π(x) =

∏x
i=1

pi−1
qi∑

x
∏x

i=1
pi−1
qi

13
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If px = p∀x and qx = q∀x, this simplifies:

π(x) =
(p/q)x(1− p/q)

1− (p/q)n+1

This also tells us that

E(τ+
x ) =

1− (p/q)n

(p/q)x(1− p/q)
.

Recall: for discrete random variables, we say Xi
d−→

n→∞
X if P[Xi = x] −→

n→∞
P[X = x]

(for continuous r.v.s we need to use the full cdf). Similarly, Xi → π if P[Xi = x]→
π(x).

Theorem 3.7 (Convergence Theorem)
P irreducible, aperiodic, |X | <∞. Then, we know there exists unique π sta-

tionary, and

Xi
d−→

n→∞
π

for any starting distribution X0 ∼ µ. In other words,

lim
i→∞

P[Xi = x|X0 ∼ µ] = π(x)∀x.

We’ll use the following proposition:

Proposition 3.8
If P irreducible, aperiodic, |X | <∞, then there exists r > 0 s.t. ∀i ≥ r, P i(x,y) >

0 for all x,y ∈ X .

(no proof)

Now we’re ready for the main result.

Proof. Claim: without loss of generality, we can take

µ = δx,

where δx(y) = 1 if y = x and 0 if y , x. In other words, it suffices to show that

14
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P i(x,y)→ π(y)∀x,y. We want µP i(y)→ π(y)∀µ,y. This is the same as

lim
i→∞

µP i(y) =
∑
x

µ(x) lim
i→∞

P i(x,y) = π(y),

which is true assuming that we show P i(x,y)→ π(y), call (⋆).

Let Π be a matrix whose rows are all π. We claim that (⋆) is equivalent to

P i →Π. By the proposition, and the fact that the state space is finite, there exists r

and 0 < θ < 1 such that

P r(x,y) ≥ (1−θ)π(y).

Let

Q =
1
θ

(P r − (1−θ)Π).

We claim that Q is the transition matrix of a MC. Q is a transition matrix be-

cause both P r and Π are transition matrices, i.e., their rows sum to 1, and therefore

each row of Q adds to (1− (1−θ) ·1)/θ = 1. Also, we picked θ so that Q(x,y) ≥ 0, so

Q is a transition matrix.

Now, since P r = θQ+(1−θ)Π. Since θ < 1, this means we always have non-zero

chance of stepping towards the stationary distribution. Intuitively, this means that

if we try hard enough, we’ll eventually reach Π. More rigorously:

prK = (1−θk)Π+θkQk ,

which we can prove this with induction:

P r(K+1) = P rKP r

= (1−θK )ΠP r +θkQkP r

= (1−θK )Π+θkQk(θQ+ (1−θ)Π)

= (1−θK )Π+θk+1Qk+1 + (θk −θk+1)QkΠ.

All that remains is to show that QkΠ = Π.

QkΠ(x,y) =
∑
z

Qk(x,z)Π(z,y) =
∑
z

Qk(x,z)π(y) = π(y),

thus

P r(K+1) = (1−θK+1)Π+θK+1QK+1,

15
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which completes the induction.

Finally, taking the limit, we have limk→∞ P rK = Π. In general,

lim
n→∞

P n = lim
n→∞

P r⌊n/r⌋+(n−r⌊n/r⌋) = Π.

4 September 19, 2023

4.1 Ergodic Theorem

Definition 4.1 (Stopping Time)
A stopping time for stochastic process Xi is a random variable T on N∪ {∞}
such that T = i can be determined by X1, . . . ,Xi .

For example, τ+
z is a stopping time, since the event τ+

z = i occurs only when

X1, . . . ,Xi−1 , z and Xi = z.

Proposition 4.2 (Strong Markov property)
Let Xi be a Markov chain and T be a stopping time for Xi . Given T <∞ and

XT = x, (XT+i)i∈N is distributed as (Xi)i∈N starting from X0 = x.

Proof. For T fixed, this is a restatement of the usual Markov property. Also, since

T is a stopping time, fixing T = n depends only on X0, . . . ,Xn; therefore, by time

homogeneity, this statement is also true conditioned on T = n and Xn = x. Since

this is true for all n, we are done.

For Markov chain Xi , let Vx(n) be the number of visits to x before time step n.

16
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Theorem 4.3 (Ergodic Theorem)
Let P be irreducible with |X | <∞. Then,

Vx(n)
n

a.s.−→
n→∞

1
E[τ+

x ]
,

and for any function f : X → R,∑n−1
i=0 f (Xi)

n
a.s.−→

n→∞
f ,

where f =
∑

xπ(x)f (x).

Proof. Fix z ∈ X . Let Ti be the ith time that z is visited. Then, Ti+1−Ti are indepen-

dent and identically distributed by the Strong Markov property. Since TVz(n) ≤ n

and TVz(n)+1 ≥ n,

TVz(n)

Vz(n)
≤ n

Vz(n)
≤

TVz(n)+1

Vz(n)
.

Let Sn = 1/(n− 1) ·
∑n−1

i=1 (Ti+1 − Ti). By SLLN, Sn
a.s.−→

n→∞
E[τ+

z ]. But note that

SVz(n)+1 =
(TVz(n)+1 − T1)

Vz(n)
→

TVz(n)+1

Vz(n)
≥ n

Vz(n)
,

while

SVz(n) =
(TVz(n) − T1)

(Vz(n)− 1)
→

TVz(n)

Vz(n)
≤ n

Vz(n)
,

so n/Vz(n)
a.s.−→

n→∞
E[τ+

z ], as desired.

For the second part,

1
n

n−1∑
i=0

f (Xi) =
1
n

∑
x∈X

Vx(n)f (x)

=
∑
x∈X

(
Vx(n)
n
− 1
E[τ+

x ]

)
f (x) +

∑
x∈X

f (x)
E[τ+

x ]
a.s.−→

n→∞
f ,

by the first part.
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5.1 Metropolis-Hastings

Definition 5.1 (Ising Model)
Let G = (V ,E) be graph. Let X = {−1,1}|V |. The Ising model with inverse

temperature β is the distribution on X with

µ(σ ) =
1
Zβ

exp

β ∑
(v,w)∈E

σ (v)σ (w)

 ,
where Zβ is a normalization constant.

Sampling from this distribution is very expensive; to compute the normaliza-

tion constant, we have to sum over all 2|V | possible σ . In general, suppose µ is a

distribution on X which is computationally intractable. Can we find an algorithm

to approximately sample from µ? Basic idea: create a Markov chain P whose sta-

tionary distribution is µ, and then run the Markov chain for a long time, and hope

that we are close to µ.

Definition 5.2 (Metropolis-Hastings)
Let P be a markov chain and µ a distribution on X . Assume µ(x) > 0 for all x.

The Metropolis MC wrt P and µ has transition matrix

P̂ (x,y) = P (x,y)min
(
1,

µ(y)P (y,x)
µ(x)P (x,y)

)
,

whenever x , y, and P̂ (x,x) is defined so that all the rows add to 1.

First note that this is a valid transition matrix, since∑
y,x

P̂ (x,y) ≤
∑
y,x

P (x,y) = 1− P (x,x) ≤ 1,

so we can always choose P̂ (x,x) so that the rows sum to 1.
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Proposition 5.3
Let P̂ be the metropolis chain with respect to P and µ. P̂ is reversible wrt µ,

which implies that µ is stationary.

Proof. We want to show that

µ(x)P̂ (x,y) = µ(y)P̂ (y,x).

This is true when x = y, so assume x , y. Then, plugging in known values, we want

to show

µ(x)P (x,y)min
(
1,

µ(y)P (y,x)
µ(x)P (x,y)

)
= µ(y)P (y,x)min

(
1,

µ(x)P (x,y)
µ(y)P (y,x)

)
.

This is always true, since exactly one of the mins will be 1.

Lemma 5.4
If P is irreducible and P (x,y) > 0 if and only if P (y,x) > 0, then P̂ is irre-

ducible.

Proof. P̂ (x,y) > 0 and P̂ (y,x) > 0 given P (x,y) > 0 and P (y,x) > 0, meaning that P̂

has the same communicating classes.

5.2 Gibbs Sampling
Note that transition probabilities are much easier to compute now, since µ(x)/µ(y)

is generally much easier to compute than either of µ(x) or µ(y) individually. How-

ever, this still does not allow us to sample efficiently from the Ising model, since

our MC would have 2|V | nodes. We want an easier way to progress through large

MCs given transition probabilities.
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Definition 5.5 (Gibbs Sampling)
Let X = Sn for some set S and n > 0. Let µ be a distribution on X . The

Gibbs Sampler associated with µ is the MC starting from (x1, . . . ,xn) ∈ X and

moving randomly:

1. Pick I ∈ [n] randomly

2. Sample X according to

P (X = x) =
µ(x1, . . . ,x, . . . ,xn)∑
y µ(x1, . . . , y, . . . ,xn)

,

where x and y both appear in the Ith coordinate.

3. Move to (x1, . . . ,X, . . . ,xn), where X replaces xi .

In the example of the Ising model, S = {−1,1}, and we progress through the MC

by randomly sampling a specific node, then flipping/keeping its value.

Proposition 5.6
Let P̂ be the Gibbs sampler for µ. Then P̂ is reversible wrt µ.

Proof. We want to show that

µ(x1, . . . ,xn)P̂ ((x1, . . . ,xn), (y1, . . . , yn)) = µ(y1, . . . , yn)P̂ ((y1, . . . , yn), (x1, . . . ,xn)).

If all coordinates are equal, both sides are the same. Otherwise, we only need

to consider pairs of states who differ in exactly one coordinate, since otherwise the

transition probabilities are zero.

Then WLOG x1 , y1; both the LHS and RHS evaluate to

1
n

µ(x1, . . . ,xn)µ(y1, . . . , yn)∑
zµ(z,x2, . . . ,xn)

.

(the 1/n comes from the fact that we have choose the first coordinate randomly

when we transition). Since LHS=RHS, we are done.
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Example 5.7
Gibbs sampling on the Ising model is called Glauber dynamics.

To perform Gibbs sampling on the Ising model:

1. pick vertex v ∈ V at random

2. µ(v1, . . . , v, . . . ,vn) is a product of exps. since we only care about ratios of µ

between two states, we can ignore the normalization constant and terms that

do not involve v. this means we can replace σ (v) with either ±1, equal to 1

with probability

exp(β
∑

(w,v)∈E σ (w))

exp(−β
∑

(w,v)∈E σ (w)) + exp(β
∑

(w,v)∈E σ (w))
.

3. transition to the new state.

6 September 26, 2023

6.1 Total Variation Distance

Definition 6.1 (Total Variation Distance)
Let µ and ν be two distributions on X . The total variation distance, dT V (µ,ν)

is given by

dT V (µ,ν) = sup
A⊆X
|µ(A)− ν(A)|.

We can use µ and ν in the definition of dT V interchangeably with random vari-

ables distributed as µ and ν respectively.

Example 6.2
If X and Y are Bernoulli random variables with parameters p,q respectively,

then dT V (X,Y ) = |p − q|.

In this example, X = {0,1}. For all possible A ⊆ X, the difference in their proba-

bility is at most |p − q|.
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Proposition 6.3
Total variation distance is a distance metric, along with some other proper-

ties:

• dT V (µ,ν) = 0

• dT V (µ,ν) = dT V (ν,µ)

• Triangle inequality: dT V (µ,ν) ≤ dT V (µ,η) + dT V (η,ν)

•

dT V (µ,ν) =
1
2

∑
x∈X
|µ(x)− ν(x)| =

∑
x:µ(x)>ν(x)

µ(x)− ν(x).

• Xn
d−→

n→∞
X if and only if dT V (Xn,X)→ 0.

Proof. Proof of third bullet point: think of µ,ν like a bar graph. Shade all area

above µ and below ν red, and shade all area above ν and below µ blue. The max-

imal difference µ(A)− ν(A) is achieved by collecting all the blue area, which is the

expression on the right side. Since µ and ν are distributions, the red and blue areas

are equal; since the middle expression is the sum of both areas, it is also equal to

the right hand side.

The goal of defining a total variation distance is to eventually try to compute

dT V (µP i ,π).

As i increases, the total variation distance to the stationary distribution should de-

crease. To help us understand this more concretely, we define a notion of coupling.

Definition 6.4 (Coupling)
A coupling of two distributions µ and ν on probability space X is a joint

distribution η on X ×X whose marginals are µ and ν respectively.

A coupling of random variables X and Y is a random variable (X̃, Ỹ ) for which

X ∼ X̃ and Y ∼ Ỹ .
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Example 6.5
Let X and Y be Bern(p) random variables.

Then, the independent coupling is given by

P[(X̃, Ỹ ) = (x,y)] =


(1− p)2 (x,y) = (0,0)

p(1− p) (x,y) ∈ {(0,1), (1,0)}

p2 (x,y) = (1,1).

Another coupling is to take X̃ = Ỹ :

P[(X̃, Ỹ ) = (x,y)] =


1− p (x,y) = (0,0)

p (x,y) = (1,1)

0 (x,y) ∈ {(0,1), (1,0)}.

Example 6.6
Consider the finite Gambler’s ruin MC with n states. Let X0 = x, Y0 = y, with

x ≤ y. Show that for some i, P[Xi = n|X0 = x] ≤ P[Yi = n|Y0 = y].

We will use a coupling (X̃i , Ỹi) with X̃0 = x and Ỹ0 = y that move left/right in

parallel. This is a valid coupling, since the marginal distribution of each variable

is the same as their individual distributions. Now,

P[Xi = n] = P[X̃i = n] = P[X̃i = n, Ỹi = n] ≤ P[Ỹi = n] = P[Yi = n].

Proposition 6.7
dT V (µ,ν) ≤ inf{P[X , Y ] : (X,Y ) is a coupling of µ,ν}.

Proof.

µ(A)− ν(A) = P[X ∈ A]−P[Y ∈ A] ≤ P[X ∈ A,Y , A] ≤ P[X , Y ].

This is always an inequality; there always exists coupling (X,Y ) such that P[X ,
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Y ] = dT V (µ,ν). We will not prove this, but one such example is to take p ≤ q,

U ∼Unif[0,1], X = 1u≤p, Y = 1u≤q.

Theorem 6.8 (Convergence Theorem using Coupling)
P irreducible, aperiodic, |X | <∞. Then, we know there exists unique π sta-

tionary, and

Xi
d−→

n→∞
π

for any starting distribution X0 ∼ µ. In other words,

lim
i→∞

P[Xi = x|X0 ∼ µ] = π(x)∀x.

Proof. This is equivalent to showing that dT V (µP i ,π) → 0 as i → ∞. Construct

coupling (Xi ,Yi) with X0 ∼ µ and Yi ∼ π. Then, consider independently X ′i and Y ′i
starting from µ,π respectively, and let T be the first time that X ′i = Y ′i . Let Xi = X ′i
and Yi = Y ′i for all i ≤ T and Xi = Yi = X ′i for all i > T . This pairing has the correct

marginal distributions, so it is a coupling.

Now, we have

dT V (µP i ,π) ≤ P[Xi , Yi] = P[T > i].

Note that (Xi ,Yi) is an MC on X ×X with (x,x) its only closed class. Therefore,

P[T > i] is the probability that we have not entered this closed class by time i,

which approaches 0 as i→∞, hence done.

7 September 28, 2023

7.1 Coupling Example

Example 7.1
Consider a lazy random walk on a hypercube, where “lazy” means that each

step stays in the same place with p = 1/2 and otherwise travels to a uniformly

randomly selected neighbor with p = 1/2.

The uniform distribution π(x) = 2−n is stationary. Let (Xi ,Yi) be two indepen-

dent copies of the Markov chain, where X0 = 0⃗ and Y0 is drawn from π. We can use

coupling to generate intuition on how long it takes until Xi = Yi .
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Consider Zi which has coordinate 0 if and only if Xi and Yi agree in that coor-

dinate. When Xi makes a step, Zi has p = 1/2 of staying the same and p = 1/2 of

flipping a coordinate; the same is true when Yi takes a step. Therefore Zi is equiv-

alent to the original markov chain when taking two steps at a time. Also, Z0 ∼ π,

and finding how long it takes for Xi = Yi is the same as finding how long it takes

until Z0 = 0⃗. We know E[τ+
0⃗

] = 2n, so it’ll take around 2n steps at most.

Now consider a non-independent coupling. Define (Xi ,Yi) through the follow-

ing joint process: randomly select a coordinate, and then set that coordinate to be 0

or 1 with equal probability in both Xi and Yi simultaneously. The marginals Xi and

Yi each follow the original Markov chain, so this is a valid coupling. Also, Xi = Yi
only after every coordinate has been selected at least once, so

dT V (µP i ,π) ≤ P[Xi , Yi] ≤ P[T > i],

which turns into the coupon collector problem.

7.2 Lower bound on variation distance

Proposition 7.2
Let P be an irreducible, aperiodic Markov chain and π stationary. Let A ⊆ X
be the set of states which cannot be reached from x in i steps. Then,

dT V (P i(x, ·),π) ≥ π(A).

Proof.
dT V (P i(x, ·),π) ≥ |π(A)− P i(x,A)| = π(A).

Consider the previous example. After taking i = n/2 from 0⃗, the set of reachable

states Ai has size at least 2n−1, so

dT V (P i (⃗0, ·),π) ≥ π(Ai) ≥ 2n−1/2n = 1/2.

In other words, after taking n/2 steps, we are still “far away” from the stationary

distribution.
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7.3 Random walk on binary tree

Definition 7.3
A binary tree of depth n is a graph with vertices representing binary strings

of length at most n, including the empty word (2n+1 − 1 nodes total). Edges

exist between nodes such that one can be obtained from the other by adding

a 0 or 1.

A lazy random walk on a binary tree remains stationary with p = 1/2, or moves

to an adjacent node randomly with p = 1/2. We want to bound dT V (P i(x, ·),π).

Consider the following coupling (Xi ,Yi):

• first, pick one of Xi or Yi to move, with the other staying. repeat until both

are on the same level.

• after the first stage, Xi and Yi always move or stay together.

Each marginal distribution of both stages is equivalent to the original Markov

chain, so this is a valid coupling. Based on the previous lower bound, we can

make some heuristics about how long it takes until Xi = Yi :

• the random walk that starts with the lower level will never, at any point,

exceed the level of the other walk. Therefore, once the walk who starts with

higher level reaches the root, Xi = Yi .

• we will prove in the HW that we can project this coupled Markov chain onto

a birth and death chain on the level of each walk.

• starting from root x0, a random walk can reach at most level i in i steps. Let

A be the set of all such vertices. recall that π(v) = deg(v)/2|E|, since this is a

graph. therefore,

π(A) ≤ 3|A|
2n+2 − 4

.

this implies

dT V (P i(x0, ·),π) ≥ π(Ac) ≥ 1− 3(2i+1 − 1)
2n+2 − 4

.

If i is small, this distance is large, so we intuitively need a lot of steps to get

close.
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8.1 Random Lattice Walks

Lemma 8.1
Let P be a Markov Chain, and N the number of times that starting from

x, it visits x. Then, P[N = ∞] = 1, or P[N < ∞] = 1, which occurs when

P[τ+
x <∞] = 1 or P[τ+

x <∞] < 1, respectively.

Proof. P[τ+
x <∞] represents the probability that we revisit x in a finite amount of

time. If this occurs certainly, then we will visit x infinite times; otherwise, N is a

geometric sum with parameter < 1, which is finite.

Example 8.2
Consider a walk on Zd with d = 1. We want to know whether it will return to

0 infinitely often.

On the number line,

E[N ] =
∞∑
i=0

P[Xi = 0] =
∞∑
i=0

1
22i

(
2i
i

)
,

which sums the probability of seeing an equal number of left and right moves in

all sequences of length 2i. Using Stirling’s approximation,(
2i
i

)
∼ n2n

√
4πn

(n/2)2n2πn
=

4n

√
πn

,

so

E[N ] ∼
∞∑
i=0

1
4n ·

4n

√
πn

=∞.

In other words, we visit N infinitely often, which implies P[τ+
0 <∞] = 1. On the

other hand, we can show that E[τ+
0 ] =∞. If we let τyx denote the time taken to hit x

starting from y, we have

E[τ+
0 ] =

1
2
E[τ1

0 ] +
1
2
E[τ−1

0 ] + 1 = E[τ1
0 ] + 1,
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and

E[τ1
0 ] =

1
2
E[τ2

0 ] + 1 =
1
2
E[τ2

1 + τ1
0 ] + 1 = E[τ1

0 ] + 1,

hence E[τ1
0 ] = E[τ+

0 ] =∞. This is a counterintuitive result and only possible because

our state space is infinite.

Example 8.3
d = 2,3.

omitting other proofs. add later?

Lemma 8.4
Random walks on Zd for d = 1,2 return to 0 infinitely often with probability

1. When d ≥ 3, the walks return to 0 finitely often. E[τ+
0 ] =∞ for all d.

Definition 8.5
Let P be a Markov chain with countable state space X . x ∈ X is recurrent if

P , starting from x, visits x infinitely often with probability 1. x is transient

if it only visits x finitely many times with probability 1.

9 October 5, 2023
We’ll start to focus more on Markov Chains with countably infinite state spaces,

rather than strictly finite state spaces.

Definition 9.1
Let G be a countably infinite graph which is locally finite. This means that

deg(v) <∞ for all v ∈ X . We can define a random walk on G in the same way

as the finite case.

Recall from last lecture:
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Definition 9.2
A state x ∈ X is recurrent if P , starting from x, visits x infinite often with

probability 1. x is transient if it only visits x finitely many times with proba-

bility 1.

9.1 More on Transience and Recurrence

Definition 9.3
Let P be a Markov chain. Then, Green’s function G : X ×X → R∪{∞} is given

by

G(x,y) =
∞∑
i=0

P i(x,y),

which is equal to the expected number of visits to y starting from x.

In particular, x is recurrent if and only if G(x,x) =∞.

Proposition 9.4
Suppose x ∼ y. Then, the following are true:

• G(z,x) <∞ ⇐⇒ G(z,y) <∞

• G(x,z) <∞ ⇐⇒ G(y,z) <∞

Proof. Since x ∼ y, there exists r s.t. P r(y,x) > 0. First bullet point:

G(z,y)P r(y,x) =
∞∑
i=0

P i(z,y)P r(y,x) ≤
∞∑
i=0

P i+r(z,x) ≤ G(z,x).

Therefore, if G(z,x) <∞, so is G(z,y). This argument is reversible.

The second bullet point follows from the same argument:

P s(x,y)G(y,z) =
∞∑
i=0

P s(x,y)P i(y,z) ≤
∞∑
i=0

P i+s(x,z) ≤ G(x,z).
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Corollary 9.5
Transience and recurrence are class properties.

Recall that a class property is a property that holds for x ∈ C if and only if it

holds for every other element in C.

Proof. If x is transient, G(x,x) <∞ ⇐⇒ G(y,x) <∞ ⇐⇒ G(y,y) <∞ for all y ∼ x

by the previous proposition. Similarly, if x is recurrent, G(x,x) =∞ ⇐⇒ G(y,x) =

∞ ⇐⇒ G(y,y) =∞ for all y ∼ x.

Corollary 9.6
Let P be an irreducible Markov chain. The following are equivalent:

• G(x,y) <∞ for some x,y ∈ X

• G(x,y) <∞ for all x,y ∈ X

• There is a transient state

• All states are transient

• P[τ+
x =∞|X0 = x] > 0 for some x ∈ X

• P[τ+
x =∞|X0 = x] > 0 for all x ∈ X

Proof. This is essentially a restatement of the previous proposition:

• 1 ⇐⇒ 2 follows directly by the proposition.

• 3 ⇐⇒ 1 follows by definition, as does 2 ⇐⇒ 4.

• P[τ+
x =∞|X0 = x] = 1−P[τ+

x <∞|X0 = x] > 0 =⇒ P[τ+
x <∞|X0 = x] < 1, which

we showed last lecture was equivalent to x being transient.

By the above Corollary, we can now say:

Definition 9.7
An irreducible Markov Chain P is recurrent if it has a recurrent state. It is

transient if it has a transient state.
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Proposition 9.8
If x ∈ C is recurrent, C must be closed.

Proof. Suppose there exists z ∈ C and y < C s.t. P (z,y) > 0. Since recurrence is

a class property, z must also be recurrent. This is not possible given non-zero

possibility of escaping the class.

9.2 Positive / Null recurrence

Definition 9.9
If x ∈ X is recurrent, it is positive recurrent if E[τ+

x ] < ∞. Otherwise, it is

null recurrent.

For example:

• Random walks on Zd for d = 1,2 returns to 0 infinitely often. On the other

hand, we also showed E[τ+
x ] = ∞, so this is an example of a null recurrent

MC.

• Recurrent MCs on finite state spaces are positive recurrent.

Lemma 9.10 (Wald’s Lemma)
If Zi are independent and K is a stopping time wrt Zi , Ti a function of

Z0, . . . ,Zi such that Ti are identically distributed, then

E

 K∑
i=1

Ti

 = E(K)E(T1).

We will prove a generalized version of Wald’s Lemma later in the class.

Proposition 9.11
Positive/null recurrence are class properties. In particular, z positive recur-

rent implies τxy = E[τ+
y |X0 = x] <∞ for all x,y ∼ z.

Proof. Recurrence is a class property, and further recurrent states can only be pos-

itive or null recurrent. Therefore, the second part of the proposition implies the

first, so it suffices to prove only the second part.
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Assume z positive recurrent, which implies x,y recurrent. Now,

E[τ+
z ] ≥ P[τx < τ+

z |X0 = z]E[τ+
z |τx < τ+

z ,X0 = z].

Also, E[τ+
z |τx < τ+

z ,X0 = z] ≥ E[τz|X0 = x] = E[τxz ], since we have to travel from

z→ x→ z in the first expectation. Therefore,

E[τ+
z ] ≥ P[τx < τ+

z |X0 = z]E[τxz ].

Since x ∼ z, we have P[τx < τ+
z |X0 = z] > 0, and thus E[τxz ] <∞.

Now, we can finish with Wald’s Lemma. Let K be the number of visits to z

before hitting y, starting from x. After hitting z for the first time, K is geometric

with common ratio P[τ+
z < τzy ] < 1, so E[K] <∞. Define T0 = τxz and Ti the time it

takes to hit z for the (i + 1)th time. Define Zi as the series of steps taken between

Ti and Ti+1. Clearly, Ti is a function of Z0, . . . ,Zi , and also Ti+1 −Ti are independent

by the strong Markov property, so we have

E[τxy ] = E

T0 +
K−1∑
i=1

Ti

 = E[τxz ] +E[K − 1]E[τ+
z ] <∞.

10 October 12, 2023
Last time, we proved that positive/null recurrence is a class property. Therefore,

we may say:

Definition 10.1
Irreducible Markov Chain P is positive recurrent if it has a positive recurrent

state. It is null recurrent if it has a null recurrent state.

10.1 Stationary Measures

Definition 10.2
A measure on countable set X is a function µ : X → R≥0.
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We assume all of our measures are non-zero, i.e., there exists x with µ(x) > 0.

Unlike a distribution, we do not require
∑

x∈X µ(x) = 1.

Definition 10.3
A stationary measure on Markov Chain P is a measure π s.t. πP = π.

All stationary distributions are stationary measures, and so are all of their

scalar multiples. However, even if P is irreducible, stationary measures may not

be unique.

Proposition 10.4
Given measure π, P is said to be reversible wrt π if π(x)P (x,y) = π(y)P (y,x).

All reversible measures are also stationary.

Proof. Same proof as for reversible distributions.

Proposition 10.5
If P has a recurrent state, it also has a stationary measure.

Proof. In the proof of stationary distribution with |X | <∞, we showed that π(x) =

E(Nx)/E(τ+
x ) was a stationary distribution, where we defined Nx as the number of

visits to x before returning to z. So, π(x) = E(Nx) is a stationary measure, as long

as E(Nx) <∞. Suppose z is a recurrent state. Then, Nx is geometric with common

ratio P[τx < τz] < 1, since z is recurrent, so E(Nx) <∞.

Proposition 10.6
If P is irreducible and recurrent, then all stationary measures are scalar mul-

tiples of each other.

Proof. Let µ(x) be a stationary measure. We will prove in HW that µ(x) > 0 for all

x. Scale µ so that µ(z) = 1 for some z ∈ X . By the previous proposition, we know

that π(x) = E[Nx] is also a stationary measure, and further, π(z) = E[Nz] = 1 = µ(z).
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We now show that π(x) = µ(x) for all x:

µ(x) = P (z,x) +
∑
y0,z

µ(y0)P (y0,x)

= P (z,x) +
∑
y0,z

P (y0,x)

P (z,y0) +
∑
y1,z

µ(y1)P (y1, y0)


= P (z,x) +

∑
y0,z

P (z,y0)P (y0,x) +
∑

y0,y1,z

µ(y1)P (y1, y0)P (y0,x)

= . . .

= P (z,x) +
∑
y0,z

P (z,y0)P (y0,x) + . . .+
∑

y0,y1,...,yk,z

µ(yk)P (yk , yk−1) . . . P (y0,x)

≥
k∑

i=1

P(Xi = x,τ+
z ≥ i|X0 = z),

As k → ∞, this final expression approaches E[Nx], so ν(x) = µ(x) − E[Nx] ≥ 0 is

another stationary measure. Since we know ν(z) = 0, and P is irreducible, we must

have ν(x) = 0 for all x, so µ = π as desired.

Proposition 10.7
If P is irreducible and has a stationary distribution, it is positive recurrent.

Proof. P must be recurrent, because∑
x

π(x)G(x,z) =
∑
i≥0

∑
x

π(x)P i(x,z) =
∑
i≥0

π(z) =∞,

implying at least one x ∈ X with G(x,z) = ∞. By Corollary 9.6, this implies P

recurrent.
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We show π(x) = 1/E[τ+
x ], which suffices because we know π(x) > 0.

π(x)E[τ+
x ] =

∑
i

P[τ+
x ≥ i,X0 = x|X0 ∼ π]

= P[τ+
x ≥ 1,X0 = x|X0 ∼ π] +

∑
i≥2

P[Xi−1 , x, . . . ,X1 , x,X0 = x|X0 ∼ π]

= π(x) +
∑
i≥2

(P[Xi−1 , x, . . . ,X1 , x|X0 ∼ π]−P[Xi−1 , x, . . . ,X1 , x,X0 , x|X0 ∼ π])

= π(x) +P[X1 , x|X0 ∼ π]

+
∑
i≥2

(P[Xi , x, . . . ,X1 , x|X0 ∼ π]−P[Xi−1 , x, . . . ,X1 , x,X0 , x|X0 ∼ π])

= π(x) +P[X1 , x|X0 ∼ π]

= π(x) +P[X0 , x|X0 ∼ π] = 1,

where the second to last equality follows by the Markov property, and the last

equality follows by the fact that π is a stationary distribution.

Corollary 10.8
If P is irreducible and positive recurrent, there exists a unique stationary

distribution.

11 October 17, 2023

11.1 Convergence theorem on countable MCs

Theorem 11.1
Let P be an irreducible, aperiodic MC, with X countable.

• If P is positive recurrent and π is its unique stationary distribution,

then dT V (P i(x, ·),π)→ 0 as i→∞.

• If P is null recurrent, then P i(x,y)→ 0 for all i.

Proof. Let (Xi ,Yi) ∈ X×X be a Markov Chain with transition matrix P̃ ((x,y), (x′ , y′)) =

P (x,x′)P (y,y′). Since P is aperiodic and irreducible, so is P̃ . Also, π̃(x,y) = π(x)π(y)
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is a stationary distribution, since∑
(x,y)∈X×X

π̃(x,y)P̃ ((x,y), (x′ , y′)) =
∑

(x,y)∈X×X
π(x)π(y)P (x,x′)P (y,y′)

= π(x′)π(y′) = π̃((x′ , y′)).

This implies P̃ positive recurrent, so the first time T that Xi = Yi is finite almost

surely. Therefore, we can construct coupling (Xi ,Yi) with X0 = x,Y0 ∼ π such that

they move independently until i = T , and then move together thereafter. Then,

dT V (P i(x, ·),x) ≤ P[T > i],

which goes to 0 as i→∞, which proves the first part of the theorem.

Now, let µ be a stationary measure. Since P is irreducible, µ(x) > 0 is a class

property, so µ is non-zero everywhere. Rescale so that µ(y) = 1.

Define P̃ in the same way as before. If P̃ is transient, G̃((x,x), (y,y)) =
∑∞

i=0 P̃
i((x,x), (y,y)) =∑∞

i=0 P
i(x,y)2 <∞, implying P i(x,y) = 0 as i→∞, so we’re done.

Therefore, let P̃ be recurrent. Since P is null recurrent, µ(X ) = ∞, so fix some

large M and let A ⊆ X such that µ(A) > M. Define µA(z) = µ(z)/µ(A) if z ∈ A and 0

otherwise; note that µA is a distribution.

Now, use the same coupling as in the first part of the proof, where X0 = x

and Y0 ∼ µA. Then, P i(x,y) = P[τ(x,x) > i]P[Xi = y|τ(x,x) > i] + P[τ(x,x) ≤ i]P[Xi =

y|τ(x,x) ≤ i] ≤ P[τ(x,x) > i] + P[Yi = y]. Since P is recurrent, P[τ(x,x) > i] as i → ∞.

Moreover, P i[Yi = y] = µAP
i(y) ≤ µP i(y)/µ(A) ≤ 1/M. Since this holds for all M > 0,

limi→∞ P i(x,y) = 0, as desired.

Lemma 11.2
For transient P , the second statement of the above theorem holds.

Proof. If P is transient, G(x,y) =
∑
P i(x,y) <∞, so P i(x,y)→ 0 as i→∞.

Example 11.3
Random walks on Zd are either transient or null recurrent, since the uniform

measure always works. Therefore, the convergence theorem for countable

MCs gives P i(x,y)→ 0.
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One way to think about this intuitively is that mass escapes to infinity on Zd .

12 October 19, 2023

12.1 Ergodic theorem on countable MCs

Theorem 12.1
Let P be irreducible. For any starting distribution µ,

•

P
(
Vx(n)
n
→ 1

E[τ+
x ]

)
= 1.

• If P is positive recurrent, πP = π, and f : X → R is bounded, then

P

1
n

n−1∑
i=0

f (Xi)→ Eπ(f )

 = 1.

In other words, Vx(n)/n
a.s.−→

n→∞
1/E[τ+

x ] and
∑n−1

i=0 f (Xi)/n
a.s.−→

n→∞
Eπ(f ).

Remember that Vx(n) is the number of visits to x up to but not including time

n. This is the exact same as the normal Ergodic theorem.

Proof. write down the proof later.

Corollary 12.2
If P is null recurrent or transient, and E[τ+

x ] = ∞, then Vx(n)/n→ 0 almost

surely.

12.2 Expected values

Definition 12.3
Let X,Y by random variables with X in R. Then

E[X |Y ] =
∑
y

E[X |Y = y]1(Y = y).
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Note that E[X |Y ] is a function (with respect to the random variable Y ), and not

a single value.

Proposition 12.4

• If X = f (Y ),E[X |Y ] = X.

• If X,Y are independent, E[X |Y ] = E[X].

• E[E[X |Y ]] = E[X].

• If X is jointly independent of Y , Z, then E[XY |Z] = E[X]E[Y |Z].

• If Y = f (Z), E[XY |Z] = E[X |Z]Y .

• If Y = f (Z), E[E[X |Y ]|Z] = E[E[X |Z]|Y ] = E[X |Y ].

13 October 24, 2023
quiz review!

14 October 31, 2023
Last time:

E[X |Y ] =
∑
y

E[X |Y = y]1Y=y .

Also,

E[f (Y )|Y ] = f (Y ),

and

E[X |Y ] = E[X],

if X,Y independent, and

E[Xf (Y )|Y ] = E[X |Y ]f (Y ),

and

E[E[X |f (Y )]|Y ] = E[E[X |Y ]|f (Y )] = E[X |f (Y )].
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14.1 Martingales

Definition 14.1
A R-valued stochastic process Xi is a martingale if

• E(|Xi |) <∞

• E(Xi+1|Xi , . . . ,X1) = Xi

Definition 14.2
Yi is a martingale with respect to Xi if

• E[|Yi |] <∞

• Yi is a function of X1, . . . ,Xi .

• E[Yi+1|X1, . . . ,Xi] = Yi .

Proposition 14.3
If Yi is a martingale wrt Xi , then Yi is a martingale.

Proof. Since all Yi are fns of X1, . . . ,Xi , the tower laws imply that

E[Yi+1|Yi , . . . ,Y1] = E[E[Yi+1|X1, . . . ,Xi]|Y1, . . . ,Yi]

= E[Yi+1|X1, . . . ,Xi] = Yi .

Example 14.4
Let Xi be i.i.d with E[Xi] = 0 and E[X2

i ] = 1. If Sn = X1 + . . .+Xn, then Mn =

S2
n −n is a martingale wrt Xi .

E[|Si |] <∞, and Si is a fn of X1, . . . ,Xi , so the first two conditions hold. For the
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third condition,

E[Mi+1|X1, . . . ,Xi] = E[(Xi +Xi)
2 − (i + 1)|X1, . . . ,Xi]

= E[S2
i + 2SiXi+1 +X2

i+1 − i − 1|X1, . . . ,Xi]

= S2
i − i = Mi .

Lemma 14.5
If Xi ,Yi are independent martingales, then Xi +Yi is also a martingale.

Proof. If Xi ,Yi are finite, then so is Xi +Yi , so the first condition holds. Also,

E[Xi+1 +Yi+1|{Xj}j≤i , {Yj}j≤i] = Xi +Yi

by the linearity of expectation, so the second condition also holds.

Example 14.6 (Doob martingale)
Let Y ,X1,X2, . . . be r.v.s Then, Mi = E[Y |X1, . . . ,Xi] is a martingale.

From the tower law,

E[Mi+1|X1, . . . ,Xn] = E[E[Y |X1, . . . ,Xi]|X1, . . . ,Xi] = E[Y |X1, . . . ,Xi] = Mi .

Proposition 14.7
Let Mi be a martingale wrt Xi .

1. E[M1] = E[Mi]∀i

2. E[Mi |X1, . . . ,Xj ] = Mj if j ≤ i.

3. Increments are uncorrelated, i.e.,

E[(Mj −Mi)(Mj ′ −Mi′ )] = 0

if i < j < i′ < j ′.

Proof. 1.

E[Mi] = E[E[Mi−1|X1, . . . ,Xi−1]] = E[Mi−1] = . . . .
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2.

E[Mi |X1, . . . ,Xj ] = E[E[Mi |X1, . . . ,Xi−1]|X1, . . . ,Xj ]

= E[Mi−1|X1, . . . ,Xj ]

=
...

= E[Mj+1|X1, . . . ,Xj ] = Mj .

3. Suffices to assume j = i + 1 and j ′ = i′ + 1.

E[(Mi+1 −Mi)(Mi′+1 −Mi′ )] = E[E[(Mi+1 −Mi)(Mi′+1 −Mi′ )]|X1, . . . ,Xi+1]

= E[(Mi+1 −Mi)]E[(Mi′+1 −Mi′ )|X1, . . . ,Xi+1] = 0.

Theorem 14.8 (Martingale convergence theorem)
Let Mi be a martingale with E[|Mi |] ≤ c <∞. Then

M∞ = lim
i→∞

Mi

exists a.s, and E[M∞] <∞.

Example 14.9 (Polya’s urn)
We have an urn with two types of objects, Reeses and Gumdrops. At each

time step, we uniformly pick one item from the urn and replace it with 2 of

the same type of object. The urn starts with one of each type of object.

Let Ri ,Gi be the number of Reeses and Gumdrops at time i. We want to find

lim
i→∞

Ri

i + 1
,

which is the proportion of Reeses in the jar at time i. We will show that

Ri

i + 1
a.s.−→

n→∞
Unif[0,1].
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Claim 14.10
Ri is uniform on {1, . . . , i}.

Proof. We use induction. i = 1 works.

P[Ri+1 = k] = P[Ri = k]
k

i + 1
+P[Ri = k − 1]

k − 1
i + 1

=
1
i
i + 1− k
i + 1

+
1
i
k − 1
i + 1

=
1

i + 1
.

This implies that

lim
i→∞

P
( Ri

i + 1
∈ (a,b)

)
= b − a

for 0 ≤ a < b ≤ 1. Now, let’s show a.s. convergence.

Claim 14.11

Mi =
Ri

i + 1

is a martingale.

Proof. Moments are finite, so it suffices to check:

E
[Ri+1

i + 2
|R1, . . . ,Ri

]
= E

[Ri+1

i + 2
|Ri

]
=
Ri +P[chooses R|Ri]

i + 2

=
Ri +Ri/(i + 1)

i + 2
=

Ri

i + 1
.

If Mi ≥ 0, then E[|Mi |] = E[Mi] = E[Mi].

15 November 2, 2023

15.1 Optional stopping theorem
Let the notation “∧” mean min.
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Lemma 15.1
Let Mi be a martingale wrt Xi , and T a stopping time wrt Xi . Then Mi∧T is a

martingale wrt Xi .

Proof.

E[M(i+1)∧T |X1, . . . ,Xi] = E[Mi+11(T ≥ i + 1)|X1, . . . ,Xi] +E[MT 1(T ≤ i)|X1, . . . ,Xi]

= Mi1(T ≥ i + 1) +MT 1(T ≤ i) = Mi∧T ,

which works since T ,MT are by definition functions of X1, . . . ,Xi .

Theorem 15.2 (Optional Stopping Theorem)
Let Mi be a martingale with respect to Xi , and T a stopping time wrt Xi .

E[MT ] = E[M1] if any of the following conditions are satisfied:

• T ≤ c almost surely for some c <∞.

• E[T ] <∞ and |Mi+1 −Mi | ≤ c almost surely for some i < T and c <∞

• |Mi∧T | ≤ c almost surely for all i.

The third statement could have T =∞; however, given that the martingale Mi∧T

is bounded by a finite constant, the martingale convergence theorem tells us that

its limit exists almost surely, and we can take MT to be this limit.

Proof. Proof of the first bullet point:

E[MT ] = E[M1] +
c∑

i=2

E[(Mi −Mi−1)1(T ≥ i)].

We can rewrite

E[(Mi −Mi−1)1(T ≥ i)] = E[E[(Mi −Mi−1)1T≥i |X1, . . . ,Xi−1]]

= E[E[(Mi −Mi−1)|X1, . . . ,Xi−1]1T≥i] = 0.
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Example 15.3
Let Sn = X1 + . . . + Xn with Xi = ±1 be a martingale. If we start the random

walk at 0, what is the probability that we hit a before b given a < 0 < b? How

long does it take?

This is a classic. We can use the optional stopping theorem with the third cri-

terion, since |Si∧T | ≤max(|a|,b). This gives 0 = E[S1] = E[ST ] = pa+ (1− p)b, so the

probability of hitting a first is p = b/(b − a).

To compute the expected amount of time this takes, consider the martingale

S2
n −n. Since reaching a,b amounts to hitting a state in a finite, irreducible Markov

chain, E[T ] <∞, so the second criterion holds and we can apply the optional stop-

ping theorem. We thus have E[S2
T − T ] = E[S2

1 − 1] = 0, and we know E[S2
T ] =

b/(b − a) · a2 + (−a)/(b − a) · b2 = −ab, so E[T ] = −ab.

Example 15.4
Same walk as before, but biased. Let p,q be the probabilities of moving

left,right, respectively.

Let Mi = (p/q)Si . We can show that this is a Martingale. Also, |Mi∧T | is bounded,

so we can apply the optional stopping theorem to get

P =
(p/q)b − 1

(p/q)b − (p/q)a
.

We can also show that Si − i(p − q) is a martingale, which gives

E[T ] =
P a+ (1− P )b

p − q
.

Example 15.5
Consider a random walk (Xi ,Yi) on Z2. How long does it take to travel dis-

tance R away from the origin?

Here, we can show that Mi = X2
i +Y 2

i − i is a martingale. Note that this is essen-

tially the same martingale that we used in one dimension. By optional stopping,

E[X2
i + Y 2

i − T ] = 0, so E[T ] = E[X2
i + Y 2

i ], which is somewhere between R2 and

(R + 1)2. We can use this same argument to show that this will be the same for
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walks on Zd .

16 November 7, 2023

16.1 Harmonic functions

Definition 16.1
Let P be a Markov chain on X . A harmonic function is a function f : X → R
s.t. E[f (X1)|X0 = x] = f (x).

Proposition 16.2
Let Xi be a Markov Chain and f a harmonic function. f (Xi) is a martingale

wrt Xi .

Proof.
E[f (Xi+1)|X1, . . . ,Xi] = E[f (Xi+1)|Xi] = f (Xi).

Proposition 16.3
If P is irreducible and recurrent, the only bounded harmonic functions are

constant.

Proof. If f is a bounded harmonic function, then f (Xi) is a bounded martingale. So,

by the martingale convergence theorem, f (Xi) converges to a value almost surely.

On the other hand, since P is irreducible, Xi visits every state i.o., so f (Xi) must

be the same for every state, otherwise it would take on at least two distinct values

i.o.

Example 16.4
Consider the random biased walk on Z from last lecture.

Finding the martingale (p/q)Si can be motivated by harmonic functions. In par-

ticular, harmonic functions for this martingale satisfy

f (x) = pf (x − 1) + qf (x+ 1),
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which gives f (x) = a+ b(p/q)x for a,b ∈ R.

Example 16.5
Consider Markov chain on Z defined by moving −2,−1,0,1,2 with probabil-

ities pi for i ∈ [5]. How many harmonic functions are there?

We have

f (x) = p0f (x − 2) + p1f (x − 1) + p2f (x) + p3f (x+ 1) + p4f (x+ 2),

which has characteristic equation

x2 = p0 + p1x+ p2x
2 + p3x

3 + p4x
4.

This gives four roots, one of which is always 1, so all harmonic functions are of the

form

f (x) = a1 + a2λ
x
2 + a3λ

x
3 + a4λ

x
4.

16.2 Harmonic extensions

Proposition 16.6
Let P be a Markov chain and S ⊆ X . Assume P (x,x) = 1 for all x ∈ S and Xi ∈ S
for some i a.s. Any bounded function f : S → R has a unique extension to a

harmonic function

f̃ (x) = E[f (Xt)|X0 = x],

where T is the first time that Xi enters S.

Recall that “extending” a function means to replace it with another function

whose values are the same on the domain on the original function.

Proof. The function is harmonic, since

E[f̃ (X1)|X0 = x] = E[E[f (XT )|X0 = X1]|X0 = x]

= E[f (XT )|X1 = x] = E[f (XT )|X0 = x] = f̃ (x).

To show uniqueness, let g be any harmonic function that extends f . Since we must
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end up in S a.s. for any starting x ∈ X , and f is bounded, we must g bounded.

Therefore, the martingale g(XT∧i) is bounded, so we can apply the optional stop-

ping theorem to get E[g(XT )|X0 = x] = E[f (XT )|X0 = x] = g(x), so g = f̃ .

Corollary 16.7
The harmonic extension f̃ satisfies

sup
x∈X

f̃ (x) = sup
x∈S

f (x).

Proof. f̃ is an expected value of f (y) for all y ∈ S, so is bounded above by its values.

Corollary 16.8
Let P be an irreducible Markov chain on a finite state space, and let A,B ⊆ X
be two disjoint subsets. Let T be the first time that Xi enters A or B. Then,

P[XT ∈ A|X0] is harmonic for P̃ , which is equal to P except that P̃ (x,x) = 1 for

x ∈ A,B.

Proof. This is the unique extension for function f (x) = 1(x ∈ A) over the subset

S = A∪B.

17 November 9, 2023
Something about branching processes.

18 November 14, 2023

18.1 Continuous Time MCs
Now we shift focus from MCs in a discrete state space and discrete time space,

to MCs in a discrete state space and a continuous time space. We can intuitively

think about MCs in a continuous time space as waiting some time in the current

state before jumping to another state, where the waiting time is a real random

variable.
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We still want the normal Markov property to hold, i.e.,

P[T > t|T > s] = P[T > t − s],

where T is the total amount of time that we have to wait.

Lemma 18.1
If T ∼ exp(λ), then P[T > t|T > s] = P[T > t − s].

Proof. Recall that T ∼ exp(λ) has pdf P[T ≤ t] = 1− e−λt.

18.2 Poisson processes

Definition 18.2
A continuous time stochastic process is a family of jointly defined r.v.s {Xt}t∈R
where all Xt ∈ X .

Definition 18.3
Let Ti ∼ Exp(λ) be independent. The poisson process of rate λ is the contin-

uous time stochastic process Nt taking values in N defined by

Nt = max{i : T1 + . . .+ Ti ≤ t}.

In words, given that we have to wait Ti time per jump, Nt is the stochastic

process representing the amount of jumps we take before time t.

Theorem 18.4
Let Nt be a Poisson process of rate λ. Then:

• Mt = (Nt+s −Ns)t≥0 is also a Poisson process of rate λ.

• Mt is independent of Nt for all t ≤ s.

Proof. For the second bullet point, say we fix Ns = n; then, Nt is a function of

T1, . . . ,Tn for all t ≤ s. On the other hand, Mt relies on timesteps n + 1, . . . , so they

are independent.
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For the first bullet point, we will keep Ns fixed and then show that the amount

of time taken to get to Nt+s is also a Poisson process with rate λ. Also fix T1 =

t1, . . . ,Tn = tn. The nonnegative time between s and the end of the first n jumps is

s − (t1 + . . .+ tn). The positive time between the end of the first n+ 1 jumps and s is

T ′1 = Tn+1 − (s− (t1 + . . .+ tn)). By the memoryless property of Tn+1, T ′1 is exponential

with parameter λ. Now, if we define T ′i = Tn+i , we have that

(Nt+s −Ns) = max{i : T ′1 + . . .+ T ′i ≤ t},

since we only care about the number of steps after Ns it takes before reaching time

t + s, which is exactly t away from the point at which T ′1 starts counting from.

Since all {T ′i }i≥1 are exponential with parameter λ, this shows that (Nt+s −Ns)t≥0 is

too.

Lemma 18.5
If X1, . . . ,Xk ∼ Exp(λ), then X1 + . . .+Xk ∼ Γ (k,λ) and has density

λk

(k − 1)!
xk−1e−λx.

Proof. There are many ways to prove this, but we’ll use induction. Let Y ∼ Γ (k,λ)

and X ∼ Exp(λ). When k = 1, Y ∼ Exp(λ), so the base case holds. Now, assume the

lemma holds for all 1, . . . , k, and let Z = X +Y . Then,

fZ(z) =
∫ z

y=0
fY (y)fX(z − y)dy

=
∫ z

0

λk

(k − 1)!
xk−1e−λyλe−λ(z−y)dy

=
∫ z

0

λk+1

(k − 1)!
xk−1e−λzdy

=
λk+1

k!
zke−λz,

so Z ∼ Γ (k + 1,λ), and we are finished.

Next, we show why we call these processes poisson processes.
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Proposition 18.6
For all t, Nt ∼ Pois(λt).

Proof. Let X = T1 + . . .+ Tn. By the previous lemma, X ∼ Γ (n,λ), so

P[Nt = n] = P[X ≤ t,X + Tn+1 > t]

=
∫ t

0
P[Tn+1 > t − x]pX(x)dx

=
∫ t

0
e−λ(t−x) λn

(n− 1)!
xn−1e−λxdx

=
(λt)n

n!
e−λt .

18.3 More definitions for continuous time MCs
Let Xi be a discrete time MC with transition matrix K , and Nt be a Poisson process

with rate λ. Then, XNt
can be viewed as a continuous time MC with transitions in

exponentially distributed intervals, since Nt (as t increases) jumps only in expo-

nentially distributed intervals.

For continuous time MCs, we define P t(x,y) = P[Xt = y|X0 = x]. For this specific

MC, we have

P t(x,y) =
∑
n

(λt)n

n!
e−tλKn(x,y),

by conditioning on Nt.

Definition 18.7
Let K be an N ×N matrix. The matrix exponential

exp(K) =
∑
i≥0

K i

i!
.
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Proposition 18.8
The matrix exponential satisfies:

• The matrix function F(t) = exp(tX) is the unique solution to the system

of differential equations defined by d/dtF(t) = XF(t).

• If X = ADA−1, exp(X) = Aexp(D)A−1.

• If X and Y commute, exp(X)exp(Y ) = exp(X +Y ).

Proof. homework.

add this here.

From the proposition, exp(−λtI) = e−tλ, so

P t = exp(−λtI)exp(λtK) = exp(−λt(I −K)).

This leads to the natural extension of a random walk:

Example 18.9
Let G be a graph. The continuous time random walk on G of rate λ is the

continuous time MC XNt
, where Xi is a random walk on G and Nt is a poisson

process of rate λ.

19 November 16, 2023

19.1 Continuous time Markov Chains (CTMCs)

Definition 19.1
Let X be a finite state space. A generator is a matrix Q whose rows and

columns are indexed by X s.t. Q(x,y) ≥ 0 if x , y and whose rows sum to 0.
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Lemma 19.2
If Q is a generator and D is a matrix consisting of the diagonal entries of Q,

then the matrix K = −D−1(Q −D) is a transition matrix. If D has any 0s on

the diagonal then we interpret the corresponding row in K to be 1 on the

diagonal and 0 everywhere else.

Proof. Since diagonal elements are ≤ 0, all entries in K are nonnegative. Further,

the xth row of Q −D sums to −D(x,x), so multiplying by D−1 forces each row sum

to 1.

Definition 19.3
A continuous time Markov chain (CTMC) with state space X and generator

Q is a stochastic process Xt defined inductively as follows. Given Xs = x, we

wait for exp(−Q(x,x)) distributed amount of time, and then take a step ac-

cording to K = −D−1(Q−D). If Q(x,x) = 0, we stay at x forever. We call K the

emedded discrete time Markov chain, and the entries of Q the transition

rates.

Another way to view this definition: given Xs = x, we have Ty ∼ exp(Q(x,y))

random variable for each y and then move the y with the minimum Ty after Ty
time. Remember that for generator Q the rows sum to 0, so

∑
z,xQ(x,z) = Q(x,x).

It can be shown that choosing the waiting for exp(−Q(x,x)) time, and then moving

according to K , gives the same distribution as choosing the waiting time and step

along the MC at the same time (by taking the minimum waiting time).

Proposition 19.4
A continuous time MC Xt satisfies the Markov property in the following way:

conditioned on Xt, future Xs for s > t is distributed as if the MC started from

Xt, and is thus independent from past Xs′ for s′ < t.

there is some connection between the original CTMC that was introduced

last time. what is the generator for that or smth.
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Example 19.5
We define another continuous time random walk on graph G with generator

Q(x,y) = 1 if (x,y) ∈ E and Q(x,x) = −deg(x).

19.2 Kolmogorov Equations

Theorem 19.6 (Kolmogorov backwards and forwards equations)
Let P t be a CTMC with generator Q. Then P t is the unique solution to the

equations
d
dt

P t = QP t ,

and
d
dt

P t = P tQ,

with initial condition P 0 = I .

Corollary 19.7
Let Xi be a CTMC with generator Q. Then P t = exp(tQ).

Proof. exp(tQ) satisfies the forwards and backwards equations (with the initial

condition). By the theorem, this is unique, so it is P t.

Now we prove the main theorem.

Proof. First,

d
dt

P t = lim
h→0

P t+h − P t

h
= lim

h→0
P t P

h − I
h

= lim
h→0

P h − I
h

P t ,

where we are allowed to commute by memorylessness. Therefore, it suffices to

show that

lim
h→0

P h − I
h

= Q.

First we consider diagonal entries. We can stay at state x by taking no jumps, or

at least two jumps and landing back at x. Recall each jump is exponential T ∼
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Exp(−Q(x,x)), so the probability that we take at least two timesteps (and land in

the same place) is bounded above by P[T ≤ h]2 = h2e2Q(x,x)h ∈O(h2). Thus,

P h(x,x)− 1
h

=
P[(T > h)]− 1 +O(h2)

h
=
ehQ(x,x) − 1

h
+O(h),

which has limit limh→0 e
hQ(x,x)/h = Q(x,x).

Next we do non-diagonal entries. We can jump from x to y, x , y, only by taking

at least one jump with correct transition probability. As before, taking at least two

jumps is O(h2), so

P h(x,y)
h

=
P[T < h]K(x,y) +O(h2)

h
=

(1− ehQ(x,x)K(x,y))
h

+O(h).

By definition, K(x,y) = −Q(x,x)−1Q(x,y), so the limit is limh→0(1−ehQ(x,x))K(x,y)/h =

−Q(x,x)K(x,y) = Q(x,y).

20 November 21, 2023

20.1 Stationary distributions on CTMC

Proposition 20.1
For a CTMC, P t(x,x) > 0 for all t and P t(x,y) > 0 for all t > 0 if and only if

K i(x,y) > 0 for some i, where K is the embedded discrete time chain.

Proof. For any t, P[T > t] = etQ(x,x) is the probability that we don’t move, so P t(x,x) ≥
etQ(x,x) > 0.

If K i(x,y) > 0, there is some chance to take i steps from x to y within time t, so

P t(x,y) > 0. Conversely, if P t(x,y) > 0, then there must exist some path in the MC

leading from x to y, so K i(x,y) > 0 for some i.

Definition 20.2
π is a stationary distribution if πP t = π for all t.
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Proposition 20.3
The following are equivalent:

• πP t = π for all t > 0.

• πQ = 0.

• µK = µ, where µ(x) = π(x)Q(x,x)/
∑

y π(y)Q(y,y).

Proof. If πP t = π for all t, then Kolmogorov gives

d
dt

πP t = πP tQ = 0 =⇒ πQ = 0.

Conversely, if πQ = 0,

πP t = π
∑ tnQn

n!
= π,

since everything in the sum dies.

For the third bullet point, µK = µ ⇐⇒ µ(I − K) = 0, which is equivalent to

µD−1(D +Q −D) = 0. But µD−1 = π, so πQ = 0. huh.

Note that this implies that the stationary distribution for a CTMC and its em-

bedded discrete time chain are not the same.

Corollary 20.4
All CTMC on finite state spaces have a stationary distribution. It’s unique if

the Markov Chain is irreducible.

Proof. The embedded discrete time chain has a stationary distribution, and there-

fore so does the CTMC. If the CTMC is irreducible, so is K . Then, the mapping

from µ to π is unique, since irreducible implies Q(x,x) > 0 for all x.

Definition 20.5
Q is reversible with respect to π if π(x)Q(x,y) = π(y)Q(y,x).
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Lemma 20.6
The following are equivalent:

• Q is reversible with respect to π

• P t is reversible with respect to π for all t.

Proof. If Q is reversible wrt π, then

π(x)P t(x,y) =
∑
i

ti
π(x)Qi(x,y)

i!
=

∑
i

ti
π(y)Qi(y,x)

i!
= π(y)P t(y,x).

Conversely, if π(x)P t(x,y) = π(y)P t, then Kolmogorov gives

d
dt

π(x)P t(x,y) = π(x)P t(x,y)Q(x,y) = π(y)P t(y,x)Q(y,x) =
d
dt

π(y)P t(y,x).

Setting t = 0 gives the desired result.

finish this up.
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